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Abstract/Resumo

Abstract in English
In theoretical physics, more specifically in string theory, it is predicted that the so-called
Calabi-Yau manifolds play an important role in the structure of our universe. Of impor-
tance in this physical theory are the enumerative invariants associated to such manifolds.
Among these, we focus on the study of Gromov-Witten invariants (counts of stable maps) and
Donaldson-Thomas invariants (counts of ideal sheaves). Our main contribution is, in the first
part of this thesis, to introduce an algebraic framework for the computation of open string
(or real) Gromov-Witten invariants for the quintic threefold (first achieved by Walcher). We
show, using Hodge theory, that there is a possible modular interpretation to some generating
series, based on previous work by Movasati for the closed string case. In the second part, we
introduce, using the motivic invariants defined in the work of Kontsevich and Soibelman, new
refinements of Donaldson-Thomas invariants. These are based on a version of enumerative
geometry over arbitrary fields developed and studied by Kass-Wickelgren, Levine, and others,
in which the counts obtained are not integers but quadratic forms. We also give examples
and applications. We finish the thesis by posing some questions for further research and on
possible relations between the two parts of this work.

Resumo em Português
Em Física teórica, mais especificamente em teoria das cordas, prevê-se que variedades de
Calabi-Yau desempenhem um papel importante na estrutura de nosso universo. De importân-
cia nessa teoria física são os invariantes enumerativos associados a essas variedades. Entre
eles, focamos no estudo dos invariantes de Gromov-Witten (contagens de mapas estáveis) e
nos invariantes de Donaldson-Thomas (contagem de feixes de ideais). Nossa principal con-
tribuição é, na primeira parte dessa Tese, introduzir um framework algébrico para o cálculo de
invariantes de Gromov-Witten para cordas abertas, também chamados de invariantes reais,
para a quíntica tridimensional (feito pela primeira vez por Walcher). Nós mostramos, usando
teoria de Hodge, que existe uma possível interpretação modular para algumas séries gerado-
ras, baseando-nos no trabalho anterior de Movasati para o caso da corda fechada. Na segunda
parte, a partir dos invariantes motívicos definidos no trabalho de Kontsevich and Soibelman
introduzimos, novos refinamentos de invariantes de Donaldson-Thomas. Estes são baseados
numa versão de geometria enumerativa desenvolvida e estudada por Kass-Wickelgren, Levine
e outros, na qual as contagens obtidas não são números inteiros, mas formas quadráticas.
Também damos alguns exemplos e aplicações. Finalizamos a tese colocando algumas pergun-
tas para pesquisa futura e sobre possíveis relações entre as duas partes deste trabalho.
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Introduction

This work is divided into two parts: the first one on modularity of open Gromov-Witten in-
variants in the framework of the Gauss-Manin Connection in Disguise (GMCD) program, and
the second one on arithmetic and motivic refinements of Donaldson-Thomas invariants. The
first part of the work was developed at IMPA during the academic year 2021-2022 and is sum-
marized in the paper [23] and the second part was developed at the University of Heidelberg
during 2022-2023, summarized in the paper [24].

Modularity of Open Gromov-Witten Invariants
Quasimodular forms for SL(2,Z) are holomorphic functions on the upper half-plane which can
be given by polynomials in the Eisenstein series E2,E4,E6, defined as below.

E2k := 1− 4k
B2k

∞∑
d=0

σ2k−1(d)qd

where q = e2πiz is a coordinate on the unit disk and z is a coordinate on the upper half-plane.
Also, B2k are Bernoulli numbers and σ2k−1(d) is the sum of the (2k−1)th powers of divisors of
d.

Quasimodular forms (in particular modular forms, which are quasimodular forms that do
not involve E2) have many applications in number theory and physics, and knowing whether a
function has a modular behavior is a very interesting problem. One of their main properties is
that its generators satisfy a system of differential equations, known as Ramanujan differential
equations:

E′
2 =

E2
2 −E4

12
, E′

4 =
E2E4 −E6

3
, E′

6 =
E2E6 −E2

4

2
,

where E′
k = 1

2πi
dEk
dz = q dEk

dq , where, again, z is a coordinate on the upper half-plane and q =
e2πiz.

In [55], Movasati has given an algebro-geometrical interpretation of such equations, by
considering enhanced elliptic curves, which are triples (E,α,ω) such that α is a holomorphic 1-
form (that is, α is in the first piece of the Hodge filtration), ω is a non-holomorphic 1− f orm and
the intersection product α·ω= 1. In other words, it is a curve plus a choice of basis of the middle
cohomology with fixed intersection product that respects the Hodge filtration. It is easy to see
that the space T of such triples is 3-dimensional and quasi-affine. One can, then, compute the
Gauss-Manin connection in such basis α,ω. It can be shown that there is a unique vector field
R on T such that the contraction of the Gauss-Manin connection with respect to R, i.e. ∇R ,
satisfies a natural linear equation. By looking at the one-dimensional locus L of T for which
R generates the tangent space and by restricting the coordinates of T to L (integral curve), we
conclude that R correspond to the Ramanujan equations and the coordinates correspond to the
Eisenstein series. It is important to stress that the characteristic field is computed by looking
at relations among the periods of E, i.e., integrals of α and ω over integral cycles.
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This gives us a natural way of generalizing quasimodular forms. The same procedure was
carried out for the mirror quintic family in [56]. In the same fashion, one can consider the
space of pairs (X ,B), where X is a quintic in the family and B is a basis of its third de Rham
cohomology respecting the Hodge structure and with constant intersection product. Then,
we can find a natural vector field R similarly, by looking at periods. Those satisfy a Picard-
Fuchs equation (which was first computed in the famous paper [14]) and this gives us a way
of computing the Gauss-Manin connection and finding R. From that, the coordinates of the
space T of such pairs (which is seven-dimensional) restricted to the locus L are functions with
integral q-expansions satisfying a differential equation in the same fashion as quasimodular
forms. The Yukawa coupling, which is the generating function of the Gromov-Witten invariants
for the quintic, can be written in terms of these generators. In this sense, we can see a kind of
modularity in the generating function of GW invariants. Chapter 1 concerns the definition of
such invariants and how they can be computed for the quintic threefold.

Our contribution to the program was to consider not the simpler closed Gromov-Witten
invariants, but open invariants, which are defined by looking at curves with boundaries on a
Lagrangian. This corresponds to looking at periods of integrals over paths with boundaries on
two conic curves inside the quintics on the mirror side. These invariants were first computed
by Walcher and his collaborators [66, 62, 54]. The main difference in this case is that, instead
of having a pure Hodge structure in the cohomology, we have a Mixed Hodge structure in this
case. There are also technicalities in the process of defining the Gauss-Manin connection for
the relative cohomology bundle. Those technicalities are treated in Chapters 2 and 3. We were
able to define what it meant for a basis to be compatible with a mixed Hodge structure and
defined a space T of dimension 9 of pairs (X ,B), where B is such a basis with a fixed intersec-
tion product. Then, by using a nonhomogenous version of the Picard-Fuchs equation, which
was first computed by Walcher in [66], we were able to compute the Gauss-Manin connection,
the vector field R, and to write the generating function of open Gromov-Witten invariants in
terms of the coordinate functions of T, which restricted to the locus L are complex functions
satisfying a differential equation constructed in the same way as the Ramanujan equation for
quasimodular forms. Details of this construction are in Chapter 5. We also give details for the
analogous cases for elliptic curves and closed Gromov-Witten invariants following Movasati’s
papers in Chapter 4.

Refinements of Donaldson-Thomas invariants
Donaldson-Thomas (DT) invariants are invariants defined via obstruction theory, usually for
Calabi-Yau threefold. Over the field of complex numbers, one can define such invariants in
the following way: take Z to be the moduli spaces of subschemes N (ideal sheaves IN) of a
Calabi-Yau threefold M such that the N represents a fixed homology class β and the Euler
characteristic of the sheaf ON is n. Then, obstruction theory gives us a virtual class [Z]vir in
the top cohomology, whose Poincaré dual can be integrated against the class 1 in cohomology:

DT(n,β)=
∫

[Z]PD
vir

1.

If Z ends up being smooth, the invariants are simply the topological Euler characteristics up
to sign, see [50] for details. Kontsevich and Soibelman [40] introduced a refinement of such
invariants that is not valued in Z but in (an extension of) the Grothendieck ring of varieties
K0(V ar(k)). This ring is generated (as an abelian group) by isomorphism classes of varieties
over k with the relations [S] = [T]+ [S \ T] for T ⊂ S closed. The product is given by the
Cartesian product. There is a natural morphism from this ring to Z given by the Euler char-
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acteristic that recovers classical DT invariants. The construction of such motivic invariants,
which is related to nearby fibres, is studied in Chapter 6.

In this framework, we noticed that, by considering examples of varieties defined over k =
R and computing the Euler characteristic with compact support of the real points, one gets
real versions of DT invariants. Our main examples are the degree-zero DT invariants of A3.
Classically, these are given by a generating series of plane partitions, and its motivic version
was computed in [11]. The compactly supported Euler characteristic of the real points yields
the real invariants computed in [41], which correspond to symmetric plane partitions.

Our main contribution is then to consider not only topological Euler characteristics but also
to look at a quadratically refined version of it. Based on the work of Barge and Morel [8] on
A1-homotopy theory, which, roughly, is a way of considering homotopy theory for schemes, by
exchanging the interval forA1, one can do intersection theory with a degree function valued not
in Z, but in GW(k), the ring of all quadratic forms over k. By computing the rank and signature
of such forms, one recovers the classical numbers over C and over R. For example, it is possible
to show that, over a field k, the "number" of lines on a generic cubic threefold is a form given by
x2

1 + . . . x2
15 − x2

16 − . . . x2
27 (see [36]). Of course, this has rank 27 (count over C) and signature 15,

which implies that the difference between the negative and positive terms is 3, the real signed
count. This allows us to define an Euler characteristic, by looking at the degree of the Euler
class on a scheme S. Another more categorical way is to consider the motivic stable homotopic
category and use the fact that the infinite suspension spectrum of S is strongly dualizable and
gives rise to an endomorphism of the sphere spectrum, which corresponds to an element of
GW(k). In Chapter 7, we give more precise definitions of A1-enumerative geometry, including
Chow-Witt groups.

To introduce the new invariants mentioned above, we considered motivic invariants for
the cases where the moduli spaces of coherent sheaves in question are given by the critical
locus of a smooth function f : X → A1 defined on a smooth X . In this case, these invariants
are defined via the work of Denef and Loser [20] and are related to a motivic version of the
Milnor fibre of f , which itself is defined as a sum over classes in K0(V ar(k)) of components of a
strong resolution of X0. We then introduce arithmetic DT invariants by taking the A1−version
of the Euler characteristic. We also discuss the relationship between the motivic version of
the Milnor fibre defined in K0(V ar(k)) mentioned above and the arithmetic Milnor number
defined in GW(k) using A1-enumerative geometry by Kass and Wickelgren in [35] which could
give us a way to define arithmetic invariants independently. We pose the question of whether
such a relationship can be found in general and, if the answer is positive, this would be a big
step in explaining the relationship between the real and motivic invariants. We consider two
important examples in this direction: the computation of arithmetic degree-zero DT invariants
of A3, inspired by the work of [11] and a refined computation of Gopakumar-Vafa invariants
ng,d for g and d at the Castelnuovo bound, using a result of [64]. All these computations, the
definition of our arithmetic invariant, and the comparison with the real case are described in
Chapter 8.1.
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Chapter 1

Gromov-Witten Invariants

In this section, we give a short introduction to Gromov-Witten theory, which is the main object
of study in the first part of this Thesis. Our goal here is not to prove all the results, but to
give a general overview of such objects. In the following, we assume that X is a projective
variety. The most interesting cases are when X is the projective space Pn or X is a Calabi-Yau
threefold. An important aspect is that X is Kähler, and therefore it has both a symplectic
and a complex/algebraic structure. On the symplectic side, Gromov-Witten theory is concerned
with counting so-called J holomorphic curves, that is, maps from a Riemann surface to X
that satisfy the Cauchy-Riemmann equations with respect to the complex structures. The
main tools come from analysis and the study of differential equations. On the algebraic side,
Gromov-Witten theory counts algebraic curves of a given genus on X and the tools come from
intersection and moduli theory. Both of these are in the so-called A-side of type II string theory.
Here, we focus on the algebraic definition and then we finish this chapter by mentioning Mirror
Symmetry, which relates the enumerative aspects of GW theory with Hodge theoretic aspects
of Calabi-Yau varieties. Mirror Symmetry was essential to first compute such invariants. We
follow the book [17].

1.1 Stable Maps and Their Moduli
Given a smooth projective smooth curve C of fixed genus, and p1, . . . , pn points on C, our goal,
roughly, is to count maps f : C → X , with fixed homology class f∗[C] = β ∈ H2(X ,Z) and such
that f (pi) is inside subvarieties Z1, . . . , Zn. In symbols:

f (pi) ∈ Zi and f∗[C]=β. (1.1)

There is a natural moduli space of pointed curves, which can be compactified (leading to
the so-called "stable maps", which were first introduced in [39] and we will define shortly).
The maps satisfying (1.1) form, roughly, a subvariety of the space of curves and these induce
classes in the cohomology of the moduli space (denoted M̄g,n). These classes only depend on
α1, . . . ,αn, the cohomology classes associated with the Zi and are denoted by Ig,n,β(α1, . . . ,αn).
By integrating such classes, we get the so-called Gromov-Witten invariants.

GWg,n,β(α1, . . . ,αn)=
∫

M̄g,n

Ig,n,β(α1, . . . ,αn)

We now devote ourselves to making such an idea more rigorous. The idea of considering
morphisms from smooth curves C to X has some problems. The main one is that the moduli
space of such objects is not projective and that makes intersection theory way more compli-
cated. To get a compactified version of such spaces, we need to allow nodal curves with some
conditions. Before looking at maps, we have to consider stable curves.

15



16 CHAPTER 1. GROMOV-WITTEN INVARIANTS

Definition 1.1. An n-pointed stable curve consists of a connected marked curve (C, p1, . . . , pn)
satisfying the following:

1. C has at most nodal singularities (double points);

2. p1, . . . , pn are all distinct smooth points;

3. If Ci is an irreducible component of C such that Ci ∼= P1, then Ci meets the other compo-
nents at more than two points.

The last condition is equivalent to saying that the curve has only a finite number of auto-
morphisms. Now, in the same spirit, we can define:

Definition 1.2. An n-pointed stable map consists of a connected marked curve (C, p1, . . . , pn)
and a morphism f : C → X satisfying the following:

1. C has at most nodal singularities (double points);

2. p1, . . . , pn are all distinct smooth points;

3. If Ci is an irreducible component of C such that Ci ∼=P1 and f is constant on Ci, then Ci
contains at least 3 marked or singular points;

4. If C has arithmetic genus 1 and n = 0, f is not constant.

Remark 1.3. The definitions above can be made relative, by considering curves C → S over a
scheme S with sections s1, . . . sn corresponding to the marked points. Then, we ask the fibers Cs
to have a fixed genus g for all geometric points s ∈ S and, for the case of stable curves, that Cs is
stable. For the case of stable maps, that fs : C → X is stable for every geometric point s ∈ S. Also,
if β ∈ H2(X ,Z), f has class β if every fs has class β.

By considering the functor that takes S to the set of isomorphism classes of stable curves,
we can use the classical work of [59] and [19] to define a moduli space of Mg,n of curves of
genus g with n marked points. This is going to be a stack instead of a scheme, but it has an
associated coarse moduli space M̄g,n. The dimension of this space is 3g−3+n and there are
many ways of constructing this moduli space.

By a similar idea, the functor taking S to the set of stable maps over S of genus g and
class β (the notion of isomorphism between two stable maps f1 and f2 are just isomorphisms g
between the curves that f1◦ g = f2), is associated to an algebraic stack Mg,n(X ,β) representing
the functor and a projective coarse moduli space M̄g,n(X ,β). For g = 0 and X = Pr, i.e., if one
is interested in counting rational curves, M0,n(Pr,β) is a smooth stack. This means that the
associated coarse moduli space M̄0,n(Pr,β) is an orbifold. As in this case, the homology classes
are just multiples of the class of a line ℓ, we can write M̄0,n(Pr,d), for β = dℓ. In this case, it
can be shown that the dimension of this space is rd + r+d +n−3. In general, the "expected
dimension" of M̄g,n(X ,β) is given by

d = (1− g)(dim X −3)−
∫
β
ωX +n, (1.2)

where ωX is the restriction of the hyperplane section of the ambient projective space where
X sits on. In other words, ωX is the symplectic form of X .

However, M̄g,n usually has components exceeding this dimension. This is why we need a
virtual fundamental class that only takes the right components. The expected dimension is
computed by considering, after fixing a curve C, the deformation of a map governed by the
difference h1(C, f ∗TX )−h0(C, f ∗TX ) (normal and tangent directions). By Riemann-Roch, this
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is the degree of f ∗TX , which is given by the integral and (1−g)·rk(TX )= (1−g)dim X ). A more
rigorous way of doing this computation can be found in the work of Li and Tian [48].

With the moduli spaces M̄g,n and M̄g,n(X ,β) in hand, we now turn to the goal of defin-
ing cohomology classes associated to the subvarieties appearing in the definition and virtual
fundamental classes mentioned. Consider the following morphisms

π1 : M̄g,n(X ,β)→ X n

( f ,C, p1, . . . , pn) 7→ ( f (p1), . . . , f (pn))
(1.3)

π2 : M̄g,n(X ,β)→ M̄g,n

( f ,C, p1, . . . , pn) 7→ (C̃, p1, . . . , pn),
(1.4)

where C̃ denotes the so-called "stabilization" of the curve. This is only defined if 2g+n ≥ 3, and
it is necessary because C might not be a stable curve.

If we assume that X is smooth and that M̄g,n(X ,β) is a smooth orbifold of expected dimen-
sion, we get natural maps in the cohomology groups:

π∗
1 : H∗(X ,Q)⊗n → H∗(M̄g,n(X ,β),Q)

π2,∗ : H∗(M̄g,n(X ,β),Q)→ H∗(M̄g,n,Q)

The second map induces, via Poincaré duality, a morphism in the cohomology

π2,! : H∗(M̄g,n(X ,β),Q)→ H∗+2m(M̄g,n,Q)

where m is the difference of dimensions of the two spaces. As the dimension of the moduli
space of pointed curves is 3g−3+n, we get m = (g−1)dim X +∫

X ωX .
We are now in good shape to define the Gromov-Witten classes simply by composing:

Ig,n,β(α1, . . . ,αn)=π2,!π
∗
1(α1 ⊗ . . .αn) ∈ H∗+2m(M̄g,n,Q).

Ig,n,β is a class of degree 2m+∑
degαi and, if this number is equal to 2dim M̄g,n = 2(3g−3+n),

we can compute an integral:

GWg,n,β(α1, . . . ,αn)=
∫

M̄g,n

Ig,n,β(α1, . . . ,αn)

If the dimension of the moduli space is not the expected dimension, though, such integral
cannot be computed and we need to integrate over a virtual fundamental class instead.

1.2 Virtual Fundamental Class
We now give a quick explanation of the definition of a virtual fundamental class. This is also
important in the definition of the Donaldson-Thomas invariants from the second part of the
thesis. These classes are defined when the classical fundamental classes (which are elements
in the top cohomology of projective (compact) varieties) are not suitable. These classes are
related to the "normal cone" associated to a subvariety. We explain the simplest case here, but
refer the reader to [9] for the more general construction.

Definition 1.4. Let Y be a smooth variety of dimension n and let Z ⊂Y be a subscheme and let
I be its ideal sheaf. The normal cone of Z in Y is given by:

CZY =Spec

( ∞⊕
k=0

Ik/Ik+1

)
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When Z and Y are smooth, CZY is simply the total space of the normal bundle of Z inside
Y . The normal cone, then, is responsible for the deformations of Z inside Y . If Z is given by
zeroes of some section of a vector bundle E over Y , the normal cone can be seen inside E|Z by
simply considering the map that takes a section of E and multiplying it by the section defining
Z. Recall that the total space of E|Z is simply Spec(Sym(E |Z)), where E is the sheaf of sections
of E. Therefore, the map E → I described above gives us a map CZY → E|Z .

In this case, this class refines the Euler class in the following way:

Proposition 1.5 (cf. Lemma 7.1.5 of [17]). If Z = Z(s) is given by zeroes of a section s of a vector
bundle E →Y , we have that

i∗(s∗[CZY ])= cr(E)∩ [Y ]

where i : Z → Y is the inclusion map and cr(E) is the top Chern class of E. Here the map s∗

is the Gysin map (see [27], Definition 3.3). On Chow groups, it is defined as s∗ : CH∗(E) →
CH∗−r(Z), where r is the rank, given as the inverse of the pullback of the projection, which is an
isomorphism since E is a vector bundle (geometrically, this map simply contract the fibers). As
dimCZY = n, s∗[CZY ] is a class in An−rZ, which is the "expected dimension" of Z, that is, the
number we would get if the section s defines Z as a complete intersection (generic case). Notice
that we have abused notation and used the same notation for s and s|Z : Z → E|Z .

This result tells us that if s is a generic section, s∗[CZY ] is exactly [Z] (by definition of the
top Chern class). However, in the case in which s is not generic, we still get s∗[CZY ] behaving
like [Z̃] for a generic Z̃, even when i∗[Z] does not correspond to the Chern class (sometimes
not even the dimension is right!).

Definition 1.6. Let Z be a subscheme given as zeroes of a generic section of smooth vector bun-
dle E over a smooth variety Y . We define ξ= s∗([CZY ]) ∈ CH0(Z) to be the virtual fundamental
class of Z.

Example 1.7. Consider a quintic threefold X ⊂ P4. In this case, the moduli space of stable ra-
tional maps of degree zero without marked points to P4 (i.e. lines) is simply the Grassmaninan:
Y := M̄0,0(P4,ℓ) = G(2,5). Also, the space Z := M̄0,0,(X ,ℓ) can be seen as a subspace of G(2,5)
given as zeros of the vector bundle E = Sym5(Q∗) over G(2,5), where Q is the tautological vector
bundle. We can see that the inclusion CZY → E|Z gives us a zero-dimensional class s∗[CZY ]
in Z. If s is a generic section, then Z is actually dimension zero, as expected, and the degree of
this class is the actual number of lines on X which is 2875. However, in cases in which s is not
generic, as the Fermat quintic, X has an infinite number of lines and Z has higher dimensional
components. However s∗[CZY ] is still zero dimensional and its degree is still 2875. We do not
reproduce the computation for the Fermat quintic here, but we refer the reader to [2].

In the example above, the space M0,0(X ,β) could be seen as a subspace of a smooth variety.
However, this is not always possible. To define virtual classes for all Mg,n(X ,β), one needs to
use perfect obstruction theory to compute the intrinsic normal cone. This allows us to define
an analog of the normal cone without considering an ambient space. This is done by Fantechi
and Behrend in [9]. We won’t need the details for this construction in our text. We only need
to understand that the virtual fundamental class behaves like a fundamental class in the case
the space has the expected dimension. Although the virtual fundamental classes constructed
are in Chow groups, we consider their corresponding homology classes in H∗(X ,Q).

Now that we have the virtual fundamental class ξ = [
M̄g,n(X ,β)

]virt ∈ Hd(M̄g,n(X ,β)),
where d is the expected dimension as in 1.2, we can come back to the definition of Gromov-
Witten invariants. Let π : M̄g,n(X ,β) → X n × M̄g,n be the map induced by (1.3) and (1.4). Let
p1 and p2 be the projections onto X n and Mg,n.
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Definition 1.8. Let β ∈ H2(X ,Z) be a homology class and α1, . . . ,αn ∈ H∗(X ,Q) be cohomology
classes, corresponding to subvarieties of X . Let 2g+ n ≥ 3. Then we can define the Gromov-
Witten class Ig,n,β (α1, . . . ,αn) ∈ H∗ (

M̄g,n,Q
)

as:

Ig,n,β (α1, . . . ,αn)= PD−1 p2∗
(
p∗

1 (α1 ⊗·· ·⊗αn)∩π∗(ξ)
)
,

where ξ = [
M̄g,n(X ,β)

]virt is the virtual fundamental class of M̄g,n(X ,β) and PD is Poincaré
duality.

If n, g ≥ 0, we can define the Gromov-Witten invariant GWg,n,β (α1, . . . ,αn) as the rational
number defined by

GWg,n,β (α1, . . . ,αn)=
∫
ξ

e∗1 (α1)∪ . . .∪ e∗n (αn) ,

where the e i are the components of the map π1 in (1.3).

It is important to emphasize that although Gromov-Witten invariants are related to the
count of curves on a variety, they do not always give the number of curves. Indeed, they are
usually rational numbers instead of integers.

1.3 Mirror Symmetry and Computations for the Quintic
Threefold

Let X be a Calabi-Yau threefold. In this situation, the physical theory predicts a duality be-
tween the so called A-model of type two string theory and B-model. The A-model is concerned
mostly with enumerative and symplectic geometry and it fixes the complex structure of the
variety and varies the Kähler structure. On the other hand, the B-model fixes a Kähler struc-
ture but varies the complex structure. Every Calabi-Yau manifold (that is, with fixed complex
structure) has a mirror, which is a family of manifolds with fixed Kähler class for which the
Physical theories (SCFTs) remain the same. For that reason, mirror manifolds have symmetric
Hodge diamonds, since the dimension of the complex structure moduli of the mirror and of the
Kähler moduli of the variety are the same (actually, they are locally isomorphic).

This symmetry was used to compute Gromov-Witten invariants basically by means of iden-
tifying the A-model correlation function and the B-model correlation function of the mirror.
The first one is related to the variation of the Kähler moduli, while the second is related to
the variation of the complex structure moduli. This allows to relate Gromov-Witten invariants
to periods of varieties and variations of Hodge structures. Below, we do this for the most im-
portant example in this first part, which is the quintic threefold. For details about correlation
functions the reader can check [17, Appendix B] and the references therein.

Let X denote a quintic threefold in P4. Recall that in this case the expected dimension of
the moduli space M̄0,n,β is n. Therefore, for n = 0, the invariants can be computed even without
choosing any classes αi, since we can simply integrate 1 against the fundamental class. Denote
Nd =GW0,0,dℓ.

To compute the GW invariants of X , we first relate the actual invariants and the virtual
numbers of rational curves (instanton numbers) of degree d in X , denoted by nd. They are
given by the formula

Nd = ∑
kℓ=d

nℓk−3 = ∑
k|d

nd/kk−3.

The idea behind the above formula is that, for each degree ℓ curve C on X , the component of
M̄0,0(X ,d) containing the family of degree k covering maps of C contributes with a factor k−3
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to the value of the invariant Nd [17, Theorem 7.4.4]. Putting all the invariants together as a
series: ∞∑

d=1
Nd qd =

∞∑
k=1

∞∑
ℓ=1

nℓk−3qkℓ.

In order to relate the computation on the A side with the computation on the B side, we
need the mirror map. This is defined in terms of periods of the mirror family corresponding to
a quintic threefold in P4. More details on this can be seen in Section 4.2. To summarize, the
mirror quintic family is a one parameter family and periods (integrals of a holomorphic 3-form
with respect to a 3-cycle) are solutions of the Picard-Fuchs equation

θ4( f )− z
(
θ+ 1

5

)(
θ+ 2

5

)(
θ+ 3

5

)(
θ+ 4

5

)
( f )= 0,

where θ = z ∂
∂z and z is the parameter of the family.

The mirror map T is given by the quotient of the first non-holomorphic solution of the
Picard-Fuchs equation, denoted ψ0, by the holomorphic one, denoted ψ1. For the explicit for-
mulas, see Theorem 4.9. On the same note, the coordinate of the Kähler moduli on the quintic
is given by q = exp(T).

Relating the A-model and the B-model via Mirror Symmetry gives us that the Yukawa
couplings of the A and B-models should coincide. The Yukawa coupling, on the A-side contains
enumerative information while on the B-side it is intrinsic to the geometry of the variety:

YA := 5+
∞∑

d=1
d3nd qd, on the A model,

YB :=
∫
Ω∧Ω′′′, on the B model.

By using the Picard-Fuchs equation, we can deduce that YB also satisfies a differential
equation and then compute it in terms of z. Via the mirror map, we can relate q and z and find
a formula for YA in terms of the variable q and, therefore, for the degree zero GW invariants
Nd.

YA = 5+2875
q

1− q
+609250 ·23 q2

1− q2 +·· ·+ndd3 qd

1− qd + . . .

In the next few chapters, as stated in the introduction, we focus on building a theory of
modularity for the solutions of Picard-Fuchs equations and exposing some analogies between
q-expansions like the formula above and q-expansions for modular forms. For the Gromov-
Witten invariants as above, it was done by Movasati in [56]. Our contribution is considering the
same program for open Gromov-Witten invariants for the quintic threefold, which are defined
in the same way but, instead of counting closed algebraic curves or closed J-holomorphic maps,
one counts J-holomorphic maps with boundary on a Lagragian, or in the algebraic setting, one
counts real algebraic curves (with signs). In this setting there is also a Picard-Fuchs equation
which is not homogeneous and, in the same fashion, one can relate the A and B models to
get the invariants. This was first considered by Walcher in [66]. We use Hodge theoretical
considerations in order to find a modular interpretation to the q-expansions computed there.



Chapter 2

Relative Cohomology in the Algebraic
Setting

Classically, in the differential setting, given a family of manifolds X → S, we can always look
at the de Rham cohomology of each element of the family. This gives us a vector bundle of the
base with a lattice given by the integral singular cohomology. Grothendieck [30], using hyper-
cohomology, found a way to consider these objects in a purely algebraic setting, that is, when
X → S is a morphism of algebraic varieties. We follow his ideas to make a similar definition
not for a simple family X → S, but for a situation in which each element of the family has a
subvariety as boundary and the cohomology we are interested in, is the relative de Rham co-
homology with boundary on the subvariety, that is, a family Y → X → S. In the same direction,
one can define a connection on the de Rham cohomology bundle, which considers derivatives
with respect to the coordinates of the base. Katz and Oda [37] defined an algebraic version
of such a connection in the algebraic version of the above mentioned de Rham cohomology
of Grothendieck. Here, we also follow their ideas to define an analogous connection for the
relative version that we define.

2.1 The Algebraic Relative de Rham Cohomology
Let X be a quasi-projective variety and let Y ⊂ X be a smooth closed subvariety over some fixed
field k. Our first goal is to define what should be the algebraic relative de Rham cohomology.
We recall that absolute algebraic de Rham cohomology is defined by:

Hm
dR(X /k) :=Hm(X ,Ω•

X )

where the H represents hypercohomology and Ω• is the complex of sheaves of algebraic dif-
ferential forms on X . For smooth projective varieties, it is equivalent to the analytic and C∞

de Rham cohomologies (see, for instance, chapters 4 and 5 of [58] or the article [30]). The
main property of the relative cohomology is the existence of a long exact sequence for each pair
(X ,Y ). To get the cohomology of Y , it is natural to consider the sheaf j∗ΩY , where j : Y ,→ X is
the inclusion. Recall Hm(X , j∗Ω•

Y )=Hm(Y ,Ω•
Y ). As j is a closed immersion, j∗Ω•

Y is a coherent
OX -module.

Definition 2.1. Let X be a quasi-projective variety and let Y ⊂ X be a closed subvariety over
some fixed field k. We define the relative de Rham complex of the pair (X ,Y ) as:

Ω•
X ,Y =Cone( j# :Ω•

X → j∗Ω•
Y )[−1]=Ω•

X ⊕Ω•−1
Y

with coboundary operator given in terms of the coboundary operators from Ω•
X and Ω•

Y by
d(ω,θ)= (dω, j∗ω−dθ). It is useful to note that, in our case, j∗ is just the restriction to Y .

21
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The relative de Rham cohomology of the pair (X ,Y ) is simply the hypercohomology of this
new complex:

Hm
dR(X ,Y /k) :=Hm(X ,Ω•

X ,Y )

Recall that for two cochain complexes A•,B• and a morphism f : A• → B• we define the cone
over f denoted by Cone( f ) as the cochain complex given by:

Cone( f )• = A•+1 ⊕B•

d(x, z)= (dx, f (x)−dz), x ∈ A•, z ∈ B•

We get a natural short exact sequence

0→ B• →Cone( f )→ A•+1 → 0

which yields a long exact sequence for which the boundary morphism A → B is induced by f .
Note that the first map is not simply the inclusion but the map b 7→ (0,−b).

For more details on the homological algebra definitions, we refer to [67] and section A.1
of [63]. Notice that these references use different sign conventions and we use a third one,
presented in [13]. The difference is that we consider the sign exchange in the map B →Cone( f )
in order to get a morphism of complexes.

2.2 The Hypercohomology Sheaf of a Family
Now, we want to deal with a family π : X → S of smooth projective varieties over a fixed field k
and a subfamily Y ⊂ X of closed subvarieties. We want to define a bundle over S given by the
relative de Rham cohomology Hm

dR(X ,Y ) on each fibre.
Before that, we need a general result on complexes of sheaves on families.

Definition 2.2. Let X → S be as above and let F • be a complex of OX -modules. The m-th-
hypercohomology sheaf is the sheaf of OS-modules associated to the presheaf given by

U 7→Hm (
π−1(U),F •|π−1(U)

)
This sheaf is the m-th hyperderived functor Rmπ∗ of the direct image functor π∗ from the

category of complexes of OX -modules to complexes of OS-modules, which consists of applying
the direct image in each element of the complex. To see that these two definitions are equiva-
lent, one just needs to consider the Čech resolution of the complexes and then apply the functor
π∗. We now proceed to show that this sheaf is coherent when the F i are coherent.

Theorem 2.3. Let X → S be a family of smooth projective varieties over a field k. Let F • be a
bounded complex of coherent algebraic sheaves over X . Let H m be its hypercohomology sheaf
as defined in 2.2. Then H m is coherent.

Proof. First, we observe that H m is quasi-coherent. Let U be an affine open subset of S. We
will show that, over U , H m is given by the sheaf (on the usual notation from [32]) M̃, where
M =Hm(XU ,F •).

To show this, we just need to see that M̃ and H m coincide on principal open subsets of
U , since these form a basis for the topology. Indeed, take any principal open subset of U ,
say D(a). After taking an affine open covering V of XU , acyclic1 for all sheaves F i, (this
is possible since we are assuming X to be separated), we can compute the hypercohomology
via this covering. Now, to compute the hypercohomology sheaf on D(a), we can intersect each

1An open covering V is acyclic with respect
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element V with π−1(D(a)). These intersections are all principal open subsets of the Vi (given by
D(b), where b is the image of a via the induced morphism of rings). Therefore, as the sheaves
F i are (quasi-)coherent, the Čech cohomology groups are all localizations of the correspondent
groups that appear for the covering V . As the localization functor is exact, we conclude that
the hypercohomology group for D(a) is just the localization of the cohomology group of U . This
finishes the first part of the proof.

For coherence, we need to show that the cohomology modules above are finitely generated.
Let F i = Im

(
Hm (

XU ,F •≥i|XU

)→Hm (
XU ,F •|XU

))
be the usual filtration of the hypercoho-

mology. We just need to show that the quotients F i/F i+1 are finitely generated.
Consider the map φ given by:

ω=
m∑
j=i
ω j ∈Hm

(
XU ,F •≥i|XU

)
φ7−→ωi ∈ Hm−i

(
XU ,F i|XU

)
Note that φ is well defined, since Dω= 0 =⇒ δωi = 0 and if ω= Dη, we have that ωi = δηi

(since i is the first index). We now compute the kernel of φ. It is given by

F̃ i+1 := Im
(
Hm

(
XU ,F •≥i+1|XU

)
→Hm

(
XU ,F •≥i|XU

))
.

To see this, first notice that the image above is obviously inside the kernel since its elements
can be written with ωi = 0. For the other inclusion, assume ωi = δηi. Now, consider the element
ω−Dηi, which is another representative of ω in the hypercohomology. Notice that, in this form,
the i-th term will cancel and, as dηi is in the (i+1)-th part, we conclude that ω is on the image
F̃ i+1. This implies we have an isomorphism

Hm
(
XU ,F •≥i|XU

)/
F̃ i+1 ∼= Hm−i

(
XU ,F i|XU

)
(2.1)

To finish, we use reverse induction on i to show that each F i is finitely generated. Firstly,
we know that there is an i >> 0 such that F i = 0, since the complex is bounded. On the other
hand, assuming that F i+1 is finitely generated, we can conclude the same for F i. For this, it
is enough to show that the quotient F i/F i+1 is finitely generated. After factoring the natural
epimorphism Hm (

XU ,F •≥i|XU

)
↠ F i by F̃ i+1 and its image F i+1, we get another epimorphism

Hm
(
XU ,F •≥i|XU

)/
F̃ i+1 ↠ F i

/
F i+1 .

Using the isomorphism (2.1), we get

Hm−i
(
XU ,F i|XU

)
↠ F i

/
F i+1 ,

which reduces the proof to showing that Hm−i (XU ,F i|XU

)
is finitely generated. This comes

from Theorem III.8.8b from [32] and the fact that F i is coherent.

The main example of a complex of sheaves as above is the complex Ω•
X /S of algebraic dif-

ferential forms relative to the family. In our context, we want to consider the version with
boundary, Ω•

X ,Y /S, and its hypercohomology sheaf.

Definition 2.4. For a smooth family of quasi-projective varieties X → S and Y ⊂ X smooth, we
define:

Ω•
X ,Y /S :=Cone(− j# :Ω•

X /S → j∗Ω•
Y /S)[−1]

We also set H
q
dR(X ,Y /S) as the q-th hypercohomology sheaf of Ω•

X ,Y /S as above.
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2.3 Connections on (Quasi)-Coherent Sheaves
Definition 2.5. Let X be a scheme over a field k and let S be a (quasi)-coherent sheaf of OX -
modules. A connection on S is a morphism

ρ : S →Ω1
X /k ⊗OX S

such that, for any section f of OX and any section s of S , we have:

ρ( f s)= d f ⊗ s+ f ρ(s)

The maps above can be extended to higher order. Indeed, we can define a map

Ωi
X /k ⊗OX S →Ωi+1

X /k ⊗OX S

by
ρ i(ω⊗ s)= dω⊗ s+ (−1)iω∧ρ(s)

where s and ω are sections on an open subset and ω∧ρ(s) denotes the image of ω⊗ρ(s) under
the isomorphism

Ωi
X /k ⊗OX

(
Ω1

X /k ⊗OX S
)→Ωi+1

X /k ⊗OX S

sending ω⊗η⊗ s to (ω∧η)⊗ s
The most important of these higher degree maps is the one obtained for i = 1, used to define

the so-called curvature of the connection.

Definition 2.6. Let X and S be as above and ρ be a connection on S . The curvature of the
connection ρ is the morphism

K = ρ1 ◦ρ : S →Ω2
X /k ⊗OX S

A connection is called integrable or flat if K = 0.

We finish this section with a proposition encoding the most important property of integrable
connections;

Proposition 2.7. Let X and S be as above and ρ be a connection on S . Then ρ i+1 ◦ρ i(ω⊗ s)=
ω∧K(s). In particular, if ρ is integrable, then the sequence

0→S
ρ−→Ω1

X /k ⊗OX S
ρ1−→Ω2

X /k ⊗OX S
ρ2−→ ·· ·

is a complex of sheaves.

Proof. Fix an open set U ⊂ X and take any section s of S . Let ρ(s) = ∑
a j ⊗ t j be written as a

sum of simple tensors in Ω1
X /k ⊗OX S . We compute:

ρ i+1(ρ i(ω⊗ s))= ρ i+1

(
dω⊗ s+ (−1)iω∧ρ(s)

)
=

= ρ i+1(dω⊗ s)+ (−1)iρ i+1(ω∧ρ(s))=
= 0⊗ s+ (−1)i+1dω∧ρ(s)+ (−1)iρ i+1

(∑
ω∧a j ⊗ t j

)=
= (−1)i+1dω∧ρ(s)+ (−1)i

(
dω∧ρ(s)+

+(−1)iω∧ (∑
da j ⊗ t j

)+ (−1)i+1ω∧ (∑
a j ∧ρ(t j)

))=
=ω∧ (∑

da j ⊗ t j
)+ (−1)1ω∧ (∑

a j ∧ρ(t j)
)=ω∧K(s)
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2.4 Gauss-Manin Connection for the Relative Cohomol-
ogy

The classical version of the Gauss-Manin connection in the algebraic setting is defined in [37].
They consider X → S a smooth morphism of smooth schemes over a field k. Then, they define a
filtration on the complex Ω•

X and use the associated spectral sequence to define the connection.
We will follow the same steps for the case with boundary. Let X be a smooth scheme over S
and Y be a smooth closed subscheme over S, that is, we have a morphism π : X → S and a
closed immersion j : Y → X .

From [37, §2] we have natural filtrations on Ω•
X /k and Ω•

Y /k given by

F p(Ω•
X /k)= im

(
Ω

•−p
X /k ⊗OX π

∗(Ωp
S/k)→Ω•

X /k)
)

(2.2)

and similarly for Y .
Recall that, as j is a closed immersion, j∗ is an exact functor of sheaves and therefore

j∗Ω•
Y /k can be endowed with the direct image of the filtration from Ω•

Y /k (this is just the fact
that exact functors preserve monomorphisms). We then define a filtration on Ω•

X ,Y /k in terms
of these two:

F pΩ•
X ,Y /k = F pΩ•

X /k ⊕ j∗
(
F pΩ•−1

Y /k
)
.

As a filtered complex, ΩX ,Y /k has an associated spectral sequence that has page 1 given by the
cohomology of the graded complex, that is,

Ep,q
1 =H p+q

(
Grp(Ω•

X ,Y /k)
)
, (2.3)

where Grp = F p/F p+1 and the right hand side represents the hypercohomology sheaf of the
complex (see [67]).

Proposition 2.8. Under the same hypothesis as above, we have:

Grp(Ω•
X ,Y /k)=π∗(Ωp

S/k)⊗OX Ω
•−p
X ,Y /S

Proof. Since exactness preserves quotients, we have:

Grp(Ω•
X ,Y /k)=

F pΩ•
X ,Y /k

F p+1Ω•
X ,Y /k

= F pΩ•
X /k ⊕ j∗

(
F pΩ•−1

Y /k

)
F pΩ•

X /k ⊕ j∗
(
F pΩ•−1

Y /k

) =Grp(Ω•
X /k)⊕ j∗Grp(Ω•−1

Y /k) (2.4)

As ΩX /k, ΩS/k and ΩY /k are locally free in their respective spaces and due to the definition
of the sheaves ΩX /S and ΩY /S, we get (see [37]):

Grp(Ω•
X /k)=π∗(Ωp

S/k)⊗OX Ω
•−p
X /S (2.5)

Grp(Ω•
Y /k)= (π◦ j)∗(Ωp

S/k)⊗OY Ω
•−p
Y /S . (2.6)

Being a closed immersion, j∗ commutes with tensor products and j∗ j∗(−) = −⊗OX j∗OY . We
conclude that:

j∗Grp(Ω•
Y /k)= j∗( j∗π∗(Ωp

S/k)⊗OYΩ
•
Y /S)=π∗(Ωp

S/k)⊗OX ( j∗OY )⊗ j∗OY j∗Ω•
Y /S =π∗(Ωp

S/k)⊗OX j∗Ω•
Y /S

(2.7)
Using the fact that tensor product and direct sums have a distributive property, from (2.4),
(2.5),(2.6) and (2.7) we get the result.
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Following our plan, equation (2.3) allows us to write:

Ep,q
1 =H p+q(Grp(Ω•

X ,Y /k))=H p+q(π∗(Ωp
S/k)⊗OX Ω

•−p
X ,Y /S)=

=H q(π∗(Ωp
S/k)⊗OX Ω

•
X ,Y /S).

Using that Ωp
S is locally free, tensoring before or after taking the hypercohomology does not

matter. Also, exact funtors preserve cohomology. Then:

Ep,q
1 =Ωp

S/k ⊗OS H q(Ω•
X ,Y /S)=Ωp

S/k ⊗OS H q(X ,Y /S). (2.8)

Proposition 2.9. The morphism d0,q
1 : E0,q

1 → E1,q
1 is an integrable connection in the sense of

2.5 and 2.6.

Proof. By the computation above, d0,q
1 is a map

H q(X ,Y /S)→Ω1
S/k ⊗OS H q(X ,Y /S).

We just need to check it satisfies the Leibniz rule. Let f be a section in OS and (ω,α) be a
section in H q(X ,Y /S). We have, since d0,q

1 is induced by the differential from the complexes
ΩX /k and ΩY /k, it satisfy the Leibniz rule. Therefore:

d0,q
1 ( f (ω,α))= d f ⊗ (ω,α)+ f d0,q

1 (ω,α).

Also, we notice that by using the same formula for the wedge product of higher degree differ-
ential forms, we conclude that 0= d1,q

1 ◦d0,q
1 is the curvature of the connection.

Definition 2.10. The connection defined in Proposition 2.9 is going to be called the relative
Gauss-Manin connection.

Proposition 2.11. The relative version of the Gauss-Manin connection is compatible with the
long exact sequence of the pair (X ,Y ). In other words, the diagram

. . . → H q−1(Y /S) → H q(X ,Y /S) → H q(X /S) → . . .
↓ ↓ ↓

. . . → Ω1
S/k ⊗OS H q−1(Y /S) → Ω1

S/k ⊗OS H q(X ,Y /S) → Ω1
S/k ⊗OS H q(X /S) → . . . ,

where the vertical arrows are the Gauss-Manin connections and the other arrows are induced
from the long exact sequence, commutes.

Proof. This fact is a consequence of a general fact about cone spectral sequences (see [67],
exercise 5.4.4). Notice that the diagram above can be rewritten as:

· · ·→ E0,q−1
1 (Y ) → E0,q

1 (X ,Y ) → E0,q
1 (X ) → E0,q

1 (Y ) → . . .
↓ ↓ ↓ ↓

· · ·→ E1,q−1
1 (Y ) → E1,q

1 (X ,Y ) → E1,q
1 (X ) → E1,q

1 (Y ) → . . .
,

where the horizontal maps are induced by the natural cone mappings (ω,α) 7→ω and α 7→ (0,α)
and by the restriction from X to Y . The vertical mappings are the Gauss-Manin connections
that are induced by the spectral sequences for X and Y . Now, as these maps respect the
filtrations and commute with the differential (that is, they are morphisms of filtered complexes)
they induce a morphism of spectral sequences on the first level. One can check commutativity
directly.
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To end this section, we state a corollary of the previous proposition that is going to be very
important in our applications and is also of historical interest. Gauss-Manin connection, as
we mentioned at the beginning of the chapter, should encode the way the de Rham cohomology
varies in a family. For k = C, this can be seen in terms of integrals. If we fix a homology cycle
in the base S, the most natural functions to consider are integrals of differential forms (de
Rham cohomology cocycles) over that cycle. Computing the derivative of such functions with
respect to the coordinates in S is the same thing as computing the Gauss-Manin connection at
the cocycle. For relative cycles and cocycles, we have an analogous result.

Theorem 2.12 (Integration). Let k = C. Let δs ∈ Hn(Xs,Ys) be a family of relative homology
cycles. Consider the integration map

∫
: Hn(Xs,Ys)×Hn(Xs,Ys)→C given by

(ω,θ)×δ 7→
∫
δ
ω−

∫
∂δ
θ,

where the integrals on the right hand side are defined as usual, looking at a covering of the cycle
and using that the algebraic de Rham cohomology is isomorphic to the usual one.

For a fixed family of cycles, and a section σ ∈ Γ(H n(X ,Y /S),S), consider the function s 7→∫
δs
σ. Let σ be represented by a pair (ω,θ) We can relate its differential with the Gauss-Manin

connection:

d
(∫
δs

(ω,θ)
)
=

∫
δs

∇(ω,−θ)

where ∇ is the Gauss-Manin connection and the integration on the right hand side is made on
the first term of the tensor product H n(X ,Y /S)⊗Ω1

S.

Proof. Let (ω,θ) be a cycle in the relative de Rham cohomology. We can prove the equality
locally. Choose a point 0 ∈ S and a trivializing neighborhood U or the families X and Y . U
which can be taken to be a product of intervals. Consider a cycle D given by the union of all δs
for s in U . in Hn(X ) given by the union of all δs. Now, we can write, using Stokes’ theorem and
Fubini’s theorem: ∫

D
dω=

∫
U

∫
δs

dω=
∫
∂D
ω=

∫
∂U

∫
δs

ω+
∫

U

∫
∂δs

ω

Now, using the fact that ∂δs is in Ys, we can add and subtract dθ in order to get the Gauss-
Manin connection: ∫

U

∫
δs

dω=
∫
∂U

∫
δs

ω+
∫

U

∫
∂δs

(ω|Y +dθ)−
∫

U

∫
∂δs

dθ

Using Stokes’ theorem again for dθ, we obtain∫
U

∫
δs

dω=
∫
∂U

∫
δs

ω+
∫

U

∫
∂δs

(ω|Y +dθ)−
∫
∂U

∫
∂δs

θ

∫
∂U

∫
δs

ω−
∫
∂U

∫
∂δs

θ =
∫

U

∫
δs

dω−
∫

U

∫
∂δs

(ω|Y +dθ)

By Stokes on the left-hand side and the fact that the Gauss-Manin connection is simply the
differential before dividing the part on Ω1

S, we get:∫
U

d
(∫
δs

ω−
∫
∂δs

θ

)
=

∫
U

d
(∫
δs

(ω,θ)
)
=

∫
U

∫
δs

∇(ω,−θ)

As U is arbitrary, we conclude that the integrands must be equal.
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2.5 A (Very Detailed) Example
To end this chapter, we would like to explore a very simple case to show how all the abstract
definitions we made here indeed lead us to what we expected in first place. Let Gm be the
punctured affine line A1 − {0}. Let X = Gm × (Gm − {1}) and let Y be the subscheme given by
points of the form (1, t) and (t, t) for t ̸= 1. For S = Gm − {1}, we consider the projection on the
second coordinate X → S and the composition Y → S. We are simply considering a family of
punctured affine lines with two points: one being the point 1 and the other one varying with
the family.

We are going to compute the relative algebraic de Rham cohomology in this case and the
Gauss-Manin connection. Let us consider first the de Rham complexes of each space. Notice
they are all affine schemes given by X :=SpecA, Y :=SpecB and S :=SpecC, where

A := k[z, t][z−1, t−1, (t−1)−1] B := A
(z−1)(z− t)

C := k[t][t−1, (t−1)−1].

As coherent sheaves over affine spaces are the same as modules over the structural ring, we
can write ΩX =ΩA/k and ΩX /S =ΩA/C and the same for Y . Therefore:

Ω0
X = A Ω0

X /S = A

Ω1
X = Adz+ Adt Ω1

X /S = Adz

Ω2
X = Adz∧dt Ω2

X /S = 0

Ω0
Y = B Ω0

Y /S = B

Ω1
Y = Bdz+Bdt

(2z− t−1)dz+ (1− z)dt
= Bdt Ω1

Y /S = 0

Ω2
Y = Bdz∧dt

〈(z− t)dz∧dt, (1− z)dz∧dt〉 Ω2
Y /S = 0

Notice that although Y is one-dimensional, it has a non-trivial Ω2. That is because the
closure of Y in A2 is singular. Moreover, notice that (2z− t−1)2 = (t+1)2 −4t = (t−1)2 in B:
this means that 2z− t−1 is invertible. This gives us a way to write dz in terms of dt, which
implies Ω1

Y = Bdt and Ω1
Y /S = 0. We now turn to compute the cohomologies H1(X ,Y /S) and the

Gauss-Manin connection as defined above. First, we consider the filtrations in the complexes
Ω•

X and Ω•
Y as defined in (2.2). We get:

F0Ω0
X = A F0Ω1

X =Ω1
X F0Ω2

X =Ω2
X

F1Ω0
X = 0 F1Ω1

X = Adt F1Ω2
X =Ω2

X

F2Ω0
X = 0 F2Ω1

X = 0 F2Ω2
X = 0

F0Ω0
Y = B F0Ω1

Y =Ω1
Y F0Ω2

Y =Ω2
Y

F1Ω0
Y = 0 F1Ω1

Y = Bdt F1Ω2
Y =Ω2

Y

F2Ω0
Y = 0 F2Ω1

Y = 0 F2Ω2
Y = 0

Notice that the bottom line is always zero, because Ω2
S = 0, and that F1Ω2 is the whole

space, because it is generated by dz∧dt and dt comes from π∗(Ω1
S).
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We proceed to compute the graded pieces which are the elements Ep,q
0 of the spectral se-

quence associated to the filtered complex ΩX ,Y (whose filtration is given by the sum of the
filtrations of ΩX and ΩY ). Ep,q

0 =GrpΩp+q. Looking at the filtrations from above, it is easy to
see that we get the same thing as in Proposition2.8. Indeed, the differential on ΩX ,Y induces
a map Ep,q

0 → Ep,q+1
0 . We are especially interested in the cases p = 0 and p = 1. For p = 0, we

have
0→ E0,0

0 → E0,1
0 → E0,2

0 → 0,

which translates to

0→Ω0
X →Ω1

X /S ⊕Ω0
Y → 0 ⇐⇒ 0→ A → Adz⊕B → 0

after using that Gr0Ω1
X = F0Ω1

X /F1Ω1
X =Ω1

X /Adt = Adz =Ω1
X /S. Since Ω0

X =Ω0
X /S and Ω0

Y =
Ω0

Y /S by definition, we conclude that the cohomology of the above sequence is simply the rel-
ative cohomology with respect to the family S as defined in Definition 2.1. Notice that here
we do not need to compute hypercohomology, since the Čech cohomology is trivial over affine
varieties.

For p = 1, the situation is similar. We get

0→ E1,0
0 → E1,1

0 → 0,

which is simply

0→Ω1
S ⊗Ω0

X →Ω1
S ⊗ (Ω1

X ⊕Ω0
Y )→ 0 ⇐⇒ 0→ Adt → (Adz⊕B)dt,

after using similar arguments. As all dt parts can be sent to Ω1
S, we end up again with Adz⊕B

which corresponds to the module Ω1
X ,Y /S.

The cohomology of the first complex is E0,q
1 and the cohomology of the second one is E1,q

1 . It
is easy to see that these are exactly the spaces expected in (2.8). For q = 1:

E0,1
1 = H1(X ,Y /S)= Ω1

X /S ⊕Ω0
Y /S

imΩ0
X

(2.9)

E1,1
1 = H1(X ,Y /S)⊗Ω1

S (2.10)

Proposition 2.13. H1(X ,Y /S) is a rank two C-module, generated by the elements
(1

z dz,0
)

and
(0, z).

Proof. This comes from the fact that B is generated over C by 1 and z and that exact elements
in H1(X ,Y /S) are of the form

(
∂ f
∂z dz,− f

)
for f ∈ A. This gives us that, if f does not depend on

z, (0, f ) is exact, which means that (0, g) is always equivalent to h · (0, z) modulo exact terms,
where h ∈ C. If f has a primitive F, then

( f dz,0)= (0,−F)= h · (0, z),

modulo exact forms. As the only function in A which does not have a primitive is 1
z , the proof

is finished.

The Gauss-Manin connection is induced by the differential d of the original complex Ω•
X ,Y .

We describe the action of the connection on the generators described above with a generic
coefficient h ∈ C:

∇
(
h · 1

z
dz,0

)
=

(
−∂h
∂t

· 1
z

dz,h · 1
z
· z−1
2z− t−1

)
⊗dt ∈ H1(X ,Y /S)⊗Ω1

S
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and
∇ (0,h · z)=

(
0,−∂h

∂t
z−h · z−1

2z− t−1

)
⊗dt ∈ H1(X ,Y /S)⊗Ω1

S,

where the term 1−z
2z−t−1 appeared to relate dz and dt on B.

To finish the chapter, we compute periods for k = C, that is, integrals of the cohomology
with respect to homology cycles. We will check that our relative version of the Gauss-Manin
connection behaves well with integrals, as expected in 2.12. Consider a path δt ∈ H1(X t,Yt)
connecting 1 and t for each t. We define functions on S given by pairing δt with the elements(
h · 1

z dz,0
)

and (0,h · z). Recall that, for the relative cohomology, the pairing is the natural one
induced by the long exact sequence, that is,∫

[δ]
(ω,θ)=

∫
δ
ω−

∫
∂δ
θ,

where [δ] is a relative homology class.
In our case, we have: ∫

[δt]

(
h · 1

z
dz,0

)
=

∫ t

1
h · 1

z
dz−0

∣∣∣t

1
= h(t) log(t) (2.11)

∫
[δt]

∇
(
h · 1

z
dz,0

)
=

(∫
[δt]

(
−∂h
∂t

· 1
z

dz,h · 1
z
· z−1
2z− t−1

))
dt =

=
(∫ t

1
−∂h
∂t

· 1
z

dz−
(
h · 1

z
· z−1
2z− t−1

)∣∣∣t

1

)
dt =−∂h

∂t
log(t)dt−h(t)

1
t

dt
(2.12)

∫
[δt]

(0,hz)=
∫ t

1
0−hz

∣∣∣t

1
= h(t)− th(t) (2.13)∫

[δt]
∇ (0,−hz)=

(∫
[δt]

(
0,
∂h
∂t

z+h · z−1
2z− t−1

))
dt =

=
(∫ t

1
0−

(
∂h
∂t

z+h · z−1
2z− t−1

)∣∣∣t

1

)
dt = ∂h

∂t
(t)dt− t

∂h
∂t

(t)dt−h(t)dt
(2.14)

Notice that, computing the differential of equation (2.11), we get exactly the result in equation
(2.12). This illustrates how the relative Gauss-Manin connection should behave with respect
to integrals and how periods should be computed in this situation.



Chapter 3

Mixed Hodge Structure for the Relative
Cohomology

3.1 Hodge Structures
In this section, we recall the basic concepts of Hodge structures and give some examples. We
follow Chapter 2 of [63]. This will be the basis for defining Mixed Hodge structures on relative
cohomology.

We start by recalling the basic definition of pure Hodge structure.

Definition 3.1. Let VZ be a Z-module of finite rank. A Hodge structure of weight k on V is
a decomposition

VC :=VZ⊗ZC= ⊕
p+q=k

V p,q withV p,q =V q,p.

In general, it is useful to rephrase this definition via filtrations:

Definition 3.2. Let VZ be a Z-module of finite rank. A Hodge structure of weight k on V is
a filtration

VC = F0(V )⊃ ·· · ⊃ F p(V )⊃ F p+1(V )⊃ ·· · ⊃ Fk+1(V )= 0,

satisfying F p(V )⊕Fq(V )=VC if p+ q = k+1.

Proposition 3.3. Definitions 3.1 and 3.2 are equivalent.

Proof. Let VZ be a module as above. Consider a Hodge structure in the sense of 3.1. Define

F p(V )= ⊕
r≥p

V r,k−r.

Obviously, this definition gives us a filtration on V . To see this filtration gives us a Hodge
structure in the sense of 3.2, we just need to compute F p(V )∩Fq(V ) for p+ q = k+1. Indeed,
we get

F p(V )∩Fq(V )= ⊕
r≥p

V r,k−r ∩⊕
s≥q

V s,k−s = ⊕
r≥p
s≥q

V r,k−r ∩V k−s,s = ⊕
r≥p

k−s≤p−1

V r,k−r ∩V k−s,s.

As the indices above are never equal, we conclude that the intersection is always 0. This means
F p(V )∩Fq(V )= 0 for p+ q = k+1. Also, by swapping ∩ with ⊕ in the above argument, we get:

F p(V )⊕Fq(V )= ⊕
r≥p

k−s≤p−1

V r,k−r ⊕V k−s,s =⊕
r

V r,k−r =VC

31
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On the other hand, if we have a Hodge structure in the sense of Definition 3.2, we can
define

V p,q = F p ∩Fq.

Notice that V p,q = V q,p. To show we get a decomposition as in Definition 3.1, consider indices
p, q, r and s with r+ s = p+ q = k. Without loss of generality, we can assume p > r (and thus
s > r). We get

V p,q ∩V r,s = (
F p ∩F r)∩ (

Fq ∩F s
)
= F p ∩F s,

but p+ s > r+ s = k. This means that F p ∩F s = 0.
This shows that the sum of the V p,q is a direct sum. To see that this direct sum is the

whole space, we need to proceed by induction. Take x ∈ VC and let p be the index for which
x ∈ F p(V ) but x ∉ F p+1(V ). We proceed by decreasing induction on p. For the base case, suppose
F p+1(V )= 0. Now, we can write x = a+b, with a ∈ F p+1(V ) and b ∈ Fk−p(V ). Of course, b is also
in F p(V ), therefore b ∈V p,k−p. As a = 0, we get x = b. So x ∈V p,k−p.

Now, assume it is true for p+1. Again, we write x = a+ b as above. As a ∈ F p+1(V ), by
the induction hypothesis, it can be written as a sum of elements from some V r,s. Now, as
b ∈V p,k−p, we are done. This shows that VC =⊕

p+q=k V p,q.

The main example of Hodge structure is the de Rham cohomology of a compact Kähler
manifold. In this case, we have the so-called Hodge decomposition:

Hk(X ,C)= ⊕
p+q=k

Hp,q(X ,C)

where Hp,q(X ,C) is the set of k-forms that are represented by forms of type (p, q). Of course,
this decomposition induces a Hodge structure (see Definition 3.1).

If X is a projective smooth algebraic variety, we can define its algebraic de Rham cohomol-
ogy as we did before. It is ismorphic to the usual cohomology.

Hm
dR(X /C)=Hm(X ,Ω•

X ),

There is a natural Hodge structure given by the filtration

F iHm
dR(X /C)= im

(
Hm(X ,Ω•≥i

X )→Hm (
X ,Ω•

X
))

,

where each part of the filtration is given by the image of the map induced by the natural
inclusion Ω•≥i

X ,→Ω•
X . Here Ω•≥i

X is zero if the index is less than i, and is isomorphic to Ω•
X if

the index is greater or equal to i.
This gives us two Hodge structures on the cohomology of X , which end up being isomorphic.

Definition 3.4. A morphism of Hodge structures is a morphism of modules f : V →W such
that its complexification maps V p,q to W p,q or, in terms of filtrations, such that, its complexifi-
cation maps F p(V ) to F p(W).

Remark 3.5. If X is a smooth projective variety, both cohomologies above are isomorphic. This
isomorphism is an isomorphism of Hodge structures in the sense of the definition above. For
details, see [58, Chapter 5].

It is natural to define Hodge structures in tensor products and on Hom spaces as follows:

Definition 3.6. Let V and W be Z-modules. Assume that they have Hodge structures of weight
k and ℓ, respectively. We define:

F p(V ⊗W)C =
∑
m

Fm(VC)⊗F p−m(WC)⊂VC⊗WC,
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F pHom(V ,W)C := {
f : VC→WC | f

(
Fn(VC)

)⊂ Fn+p (WC) ,∀n
}

With these definitions, V ⊗W gets a natural Hodge structure of weight k+ℓ and the space
Hom(V ,W) gets a Hodge structure of weight ℓ−k. In particular, we can define a Hodge structure
on the dual of V .

Using the fact that the image of a morphism of Hodge structures has a natural Hodge struc-
ture (by taking the images of the V p,q) and that the kernel of a morphism of Hodge structures
also has (by intersecting V p,q with the kernel), we get the following result..

Theorem 3.7. The category of Z-modules with Hodge structures is abelian.

3.2 Mixed Hodge Structures
In this section, our goal is to define what are mixed Hodge structures and prove basic proper-
ties. Here, we follow the Chapter 3 of [63].

Definition 3.8. Let V be a finite rank Z-module. A mixed Hodge structure on V consists of
two filtrations: an increasing filtration W• on V ⊗Q called weight filtration and a decreasing
filtration F• on VC called Hodge filtration, such that F• induces a (pure) Q-Hodge structure of
weight k on the graded pieces

GrW
k (V ⊗Q) :=Wk/Wk−1.

We try to give some more details about the above definition. To have a mixed Hodge struc-
ture, we not only need a decreasing filtration on the complexification (Hodge filtration), but
also an increasing filtration on V ⊗Q. The subsequent quotients of this second filtration are
expected to have Hodge structures induced by the Hodge filtration. We now write what this
structure should be.

In order to simplify notation, fix k and let G =GrW
k =Wk/Wk+1. Consider GC its complexifi-

cation. It is given by the quotient Wk⊗C
Wk−1⊗C . It is easy to see how the Hodge filtration induces a

filtration on GC:

F p(G)= F p(V )∩ (Wk ⊗C)
F p(V )∩ (Wk−1 ⊗C)

This expression is useful not only to see what is the structure of G but also to recover the
filtration F of V once we have a Hodge structure on G. Any V with a pure Hodge structure of
weight k also has a mixed Hodge structure. The weight filtration is simply given by the trivial
filtration 0=Wk−1 ⊂Wk =V .

The cohomology ring H∗(X ,Z) = ⊕2m
j=0 H j(X ,Z) of a compact Kähler m-manifold admits a

mixed Hodge structure. We take

Wk =
k⊕

j=0
H j(X ,Q)

and
F p = ⊕

r≥p
Hr,s(X )

Now, notice that Wk/Wk−1 = Hk(X ,Q) and that

F p ∩ (Wk ⊗C)
F p ∩ (Wk−1 ⊗C)

= ⊕
r≥p

Hr,k−r(X )

which is the usual Hodge filtration.
As in the case of pure Hodge Structures, we can define morphisms.
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Definition 3.9. A morphism of mixed Hodge structures is a linear map f : V → W com-
patible with both filtrations W and F. Of course, it induces a morphism of Hodge structures on
each graded piece GrW

k .

As in the case of pure Hodge structures, it is possible to define structures on tensor products
and Hom spaces. Using the same definitions given in Definition 3.6, we induce a weight and a
Hodge filtration on V ⊗W and Hom(V ,W).

We now study how morphisms of mixed Hodge structures behave. In particular, we want to
show that, as in the pure case, we also get an abelian category. It will be also useful for us to
understand how morphisms of mixed Hodge structures behave in exact sequences.

The first problem we need to solve is the fact that, for mixed Hodge structures, we have no
Hodge decomposition in the sense of Definition 3.1. This is useful to induce a Hodge structure
on the image and the kernel of a mapping.

Based on the example of the cohomology ring H∗(X ,C), in which we had a decomposition
H∗(X ,C)=⊕

p,q∈ZHp,q(X ), we can prove the following theorem.

Theorem 3.10. Let V be a module with a mixed Hodge structure. Then, the subspaces (after
tensoring by C)

I p,q := F p ∩Wp+q ∩
(
Fq ∩Wp+q +

∑
j≥2

Fq− j+1 ∩Wp+q− j

)
form a bigrading VC =⊕

I p,q and satisfy

Wk ⊗C= ⊕
p+q≤k

I p,q (3.1)

F p = ⊕
r≥p

Ir,s (3.2)

Besides that, the I p,q are compatible with the subquotients V p,q ⊂ GrW
p+q in the sense that the

restriction of the natural projections are isomorphisms.
This decomposition is known as Deligne splitting.

Proof. To simplify notation, we write Wk for Wk ⊗C and V for V ⊗C.
First, note that it is enough to show that the natural projections are isomorphisms in the

last part of the statement above. To see this, let x ∈ V and take k such that x ∈ Wk \ Wk−1.
We can write the Hodge decomposition of Wk/Wk−1 and pull it back to the I p,q (since we are
assuming we have an isomorphism). Then, we use induction to show formulas (3.1) and (3.2).

We now proceed to prove that the restriction of the projection I p,q → V p,q is an isomor-
phism.

Injectivity. Notice that I p,q = F p ∩Fq ∩Wp+q ⊗CmodWp+q−2 ⊗C. Take x ∈ I p,q. It can be
written as a sum x = y+w, where y ∈ F p ∩Wp+q ∩Fq and w ∈Wp+q−2. Suppose the projection
of x is zero in GrW

p+q. This means that x ∈ Wp+q−1 and, therefore, y ∈ Wp+q−1. But, as the
pure Hodge structure on GrW

p+q has weight p+q. we conclude that F p∩Fq = 0 in the quotient.
This implies that y is actually in Wp+q−2. We can then assume x = w ∈Wp+q−2. Repeating the
argument, we can show x = 0 (since the filtration is zero for small indices).

Surjectivity. Take a class [x] ∈ V p,q ⊂Wp+q/Wp+q−1. By definition of the spaces V p,q, there
are v ∈ F p∩Wp+q and u ∈ Fq∩Wp+q such that [x]= [v]= [u]. Therefore, we can write v = u+w,
for some w ∈Wp+q−1. Now, as GrW

p+q−1 has a Hodge structure of weight p+ q−1, we have that
F p∩GrW

p+q−1⊕Fq∩GrW
p+q−1 =GrW

p+q−1. This implies that [w]= [v′]+[u′], that is, w = v′+u′+w1,
where v′ ∈ F p ∩Wp+q−1, u′ ∈ Fq ∩Wp+q−1 and w1 ∈Wp+q−2. We can, therefore, write

v1 := v−v′ = u+u′+w1

u1 := u+u′
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We end up with v1 = u1 +w1 where [v1] = [u1] = [v] = [u] = [x] in Wp+q/Wp+q−1, but w1 ∈
Wp+q−2. Using the same argument, we get v2 and u2, but this time we need to get u′′ ∈ Fq−1

in order to write [w1] = [v′′]+ [u′′] in GrW
p+q−2. So we get v2 ∈ F p ∩Wp+q and u2 ∈ Fq ∩Wp+q +

Fq−1 ∩Wp+q−2.
Repeating as many times as necessary to get wN = 0, we can define an element y := vN = uN .

Note that [y]= [x] and y ∈ I p,q. Indeed, we have

vN ∈ F p ∩Wp+q

and
uN ∈

(
F p ∩Wp+q +Fq−1 ∩Wp+q−2 + . . .

)
=

(
Fq ∩Wp+q +

∑
j≥2

Fq− j+1 ∩Wp+q− j

)
This means y is in the intersection of these sets, which is exactly I p,q. Therefore, we found an
element that is mapped to [x] under the natural projection, which shows surjectivity.

Lemma 3.11. Let f : A → B be a morphism of mixed Hodge structures. Then, we have:

f (A)∩F p(B)= f (F p(A))
f (A)∩Wk(B)= f (Wk(A))

In the general context of vector spaces with filtrations, a map satisfying the conditions above
is called strict. So, we can rephrase Lemma3.11 by saying that any morphism of mixed Hodge
structures is strict with respect to both filtrations W and F.

Proof. First, note that we always have an inclusion f (F p(A)) ⊂ f (A)∩F p(B), since f , being a
morphism of Hodge structures, satisfy f (F p(A))⊂ F p(B). The same is of course true for W .

For the other inclusion, we use Theorem 3.10. Observe that f satisfy f (I p,q
A )⊂ I p,q

B , since it
preserves the filtrations. Take x ∈ f (A)∩F p(B) and y ∈ A such that f (y)= x. Suppose y ∉ F p(A).
Then, we can take y ∈ Fm(A), with m < p. Write y = ∑

r≥m yr,s via Deligne splitting. Now, we
have a decomposition x = ∑

r≥m f (yr,s), with f yr,s ∈ Ir,s
B . As x ∈ F p(B), we have that f (yr,s) = 0

for m ≤ r < p. Now, take y′ =∑
r≥p yr,s. Clearly, f (y′)= x and y′ ∈ F p(A). Therefore x ∈ f (F p(A)).

A similar argument shows the fact for the filtration W .

Corollary 3.12. Let
A → B → C

be an exact sequence of Z-modules equipped with mixed Hodge structures. Then, for all k, p, the
sequences

GrW
k AQ→GrW

k BQ→GrW
k CQ (3.3)

Grp
F AC→Grp

FBC→Grp
FCC (3.4)

Grp
FGrW

k AC→Grp
FGrW

k BC→Grp
FGrW

k CC (3.5)

are also exact.

The corollary is a direct consequence of the previous lemma. It allows us to put a natural
mixed Hodge structure on the image of a morphism of Hodge structures since it allows us to
put a pure Hodge structure on the graded pieces. Also, as the exactness is preserved, it is clear
that the quotient of a mixed Hodge structure by the kernel of a morphism is the image of this
morphism.

We conclude the following:

Corollary 3.13. The category of mixed Hodge structures is abelian.
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We now prove a proposition that will be our main ingredient to define a mixed Hodge struc-
ture on the relative cohomology.

Proposition 3.14. Let
0→ A → B → C → 0

be an exact sequence of Q-vector spaces with an increasing filtration W• and a decrasing filtra-
tion F•. Suppose the maps are strict with respect to both filtrations and that they induce mixed
Hodge structures on A and C. Then the filtrations induce a mixed Hodge structure on B.

Proof. It is sufficient to prove that there is a pure Hodge structure induced by the filtration F
on the graded pieces GrW

k B =Wk(B)/Wk−1(B). By 3.12 and the fact the maps are strict w.r.t W ,
we have an exact sequence

0→GrW
k A →GrW

k B →GrW
k C → 0,

where the first and last terms have pure Hodge structures of weight k. Using that the maps
are strict w.r.t F, we can restrict this sequence to

0→ Ap,q
k → Bp,q

k → Cp,q
k → 0,

where ∗p,q
k = F p(GrW

k (∗))∩Fq(GrW
k (∗)). This implies that

⊕
Bp,q

k =GrW
k B, since

⊕
Ap,q

k =GrW
k A

and
⊕

Cp,q
k = GrW

k C, which shows that F induces a Hodge structure on GrW
k B. Therefore, B

has a mixed Hodge structure.

Remark 3.15. It is possible to show that the converse of Proposition 3.14 is also true, that is, if
B admits a mixed Hodge structure, the maps are strict with respect to both filtrations. Of course,
this is a simple consequence of Theorem 3.10.

3.3 The Case of Relative de Rham Cohomology
In this section, let X be a smooth projective variety (or even a compact Kähler manifold). As-
sume we have Y ⊂ X a smooth closed subvariety (closed submanifold). We want to understand
the mixed Hodge structure in the relative algebraic de Rham cohomology Hm

dR(X ,Y ), as defined
in Chapter 2.

The first step in order to describe the mixed Hodge structure on the relative cohomology is
to give a Hodge filtration. The natural way to do it is to consider, for each p, the complex

(F pΩ•
X ,Y )k =

{ 0, k < p
Ωk

X , k = p
Ωk

X ,Y , k > p

and take
F pHm

dR(X ,Y )= im(Hm(X ,F pΩ•
X ,Y )→Hm(X ,Ω•

X ,Y )).

At first, it may seem strange to consider ΩX as the first nonzero term. However, this is
natural: we are simply considering the direct sum F pΩ•

X ⊕F pΩ•−1
Y . This is the usual way to

induce a filtration in the cone of a morphism (see [63], Theorem 3.22). Next, we observe that
this filtration can be related to the filtrations on Hm

dR(X ) and Hm
dR(Y ). Fix a good covering

U . An element in Hm
dR(X ,Y ), by the definition of hypercohomology, is represented by a sum

σ=∑m
i=0σ

i with
σi = (ωi,αi), ωi ∈ Cm−i(U ,Ωi

X ), αi ∈ Cm−i(U ,Ωi−1
Y ),
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which is D-closed. It is important to observe that we are applying the fact that Ck(U ,Ω j
X ,Y )=

Ck(U ,Ω j
X )⊕Ck(U ,Ω j−1

Y ), which is true by definition of ΩX ,Y . If σ ∈ F pHm
dR(X ,Y ), we have

σk = 0 for k < p and σp = (ωp,0). This means that the elements from F pHm
dR(X ,Y ) can be

represented by a pair (ω,α) of sums with ω ∈ F pL m(U ,Ω•
X ) and α ∈ F pL m(U ,Ω•

Y ), where L •

is the total complex from the definition of hypercohomology.

Lemma 3.16. Let Y ⊂ X be a smooth closed subvariety of a smooth projective variety (or a
closed submanifold of a compact Kähler manifold). Then the natural filtration on the relative
cohomology is related to the filtrations of Hm

dR(X ) and Hm
dR(Y ) in the following way:

α(F p(Hm−1
dR (Y ))= Im(α)∩F p(Hm

dR(X ,Y ))

β(F p(Hm
dR(X ,Y ))= Im(β)∩F p(Hm

dR(X )).

Here α and β are the maps appearing in the long exact sequence.

The proof follows from the observation above and the fact that the maps α and β are induced
by the inclusion x 7→ (0,−x) and the projection (x, y) 7→ x.

We can put all these considerations together in one theorem.

Theorem 3.17. Let Y ⊂ X be a closed subvariety of a smooth projective variety (or a closed
submanifold of a compact Kähler manifold). Then the relative cohomology Hm

dR(X ,Y ) has a
mixed Hodge structure with filtrations given by:

WkHm
dR(X ,Y )=

{ 0, k < m−1
imα, k = m−1

Hm
dR(X ,Y ), k ≥ m

F pHm
dR(X ,Y )= im

(
Hm(X ,F pΩ•

X ,Y )→Hm
(
X ,Ω•

X ,Y

))
This structure makes the long exact sequence of the pair an exact sequence of mixed Hodge

structures.

Proof. The theorem is a direct application of Proposition 3.14. Consider the short exact se-
quence:

0→ imα
ι→Hm

dR(X ,Y )
p→ker(|Y )→ 0 (3.6)

Note that imα and ker|Y have pure Hodge structures. We denote A = imα and C = ker|Y . A
has a pure Hodge structure of weight m−1 and Hodge filtration given by F p A =α(F pHm−1

dR (Y )).
On the other hand, C has a pure Hodge structure of weight m, with Hodge filtration given by
F pC = F pHm

dR(X )∩C.
We are now in conditions to verify the hypothesis of Proposition3.14. By lemma 3.16, the

morphisms ι and p are strict w.r.t the filtrations. Indeed,

ι(F p A)=α(F pHm−1
dR (Y ))= F pHm

dR(X ,Y )∩ imα= F p(Hm
dR(X ,Y ))∩ imι

and
p(F pHm

dR(X ,Y ))=β(F pHm
dR(X ,Y ))= F pC∩ imβ= F pC∩ker|Y

This shows our result.
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Chapter 4

Gauss-Manin Connection in Disguise:
Generalizing quasimodularity

Quasimodular forms are holomorphic functions on the upper half-plane which can be given by
polynomials in terms of the Eisenstein series E2,E4,E6. This is a natural extension of the ring
of modular forms (which is generated by only E4 and E6) and one of its main properties is that
its generators satisfy the system of differential equations

E′
2 =

E2
2 −E4

12
, E′

4 =
E2E4 −E6

3
, E′

6 =
E2E6 −E2

4

2
,

where E′
k = 1

2πi
dEk
dz = q dEk

dq .
In [55], Movasati has given an algebro-geometrical interpretation of such equations, by

considering enhanced elliptic curves, which are triples (E,α,ω), where E is an elliptic curve,
α is a holomorphic 1-form (that is, α is in the first piece of the Hodge filtration), ω is a non-
holomorphic 1-form and α ·ω = 1. In other words, it’s a curve plus a choice of basis of the
middle cohomology with fixed intersection product that respects the Hodge filtration. The
space T of such triples is 3 dimensional and quasi-affine. One can then compute the Guass-
Manin connection in such basis α,ω. Then it can be shown that there is a unique vector field on
T such that the Gauss-Manin connection satisfies a natural linear equation. Then, by looking
at the one-dimensional locus L of T generated by the integral curves for R and by restricting
the coordinates of T to L, we conclude that R is the Ramanujan equations and the coordinates
correspond to the Eisenstein series. It is important to stress that the vector field is computed
by looking at relations among the periods of E, i.e., integrals of α and ω over integral cycles.

In the same fashion, as it is done in [56], one can consider the space of pairs (X ,B), where
X is a quintic in the family and B is a basis of its third de Rham cohomology respecting the
Hodge structure and with constant inner product. Then, we can find a natural vector field
R similarly, by looking at periods. These periods satisfy a Picard-Fuchs equation (which was
first computed in the famous paper [14]) and this gives us a way of computing the Gauss-
Manin connection and finding R. From that, the coordinates of the space T of such pairs
(which is seven-dimensional) restricted to the locus L are functions with integral q-expansions
satisfying a differential equation in the same fashion as quasimodular forms. The Yukawa
coupling, which is the generating function of the Gromov-Witten invariants for the quintic,
can be written in terms of these generators. In this sense, we can see a kind of modularity in
the generating function of GW invariants.

This idea of using the Gauss-Manin connection to find a geometric interpretation of quasi-
modular forms and later to generalize it to more general settings is called Gauss-Manin connec-
tion in disguise. This name comes from the fact that, in principle, the Gauss-Manin connection
is "hidden" and appears only after you look at the geometric setting.

39
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4.1 Elliptic Curves and Quasimodular Forms
In this section, for completion, we reproduce the results present in the work [55], where the
geometrization of quasimodular forms was first considered.

4.1.1 Weierstrass Family of elliptic curves
Let our base field be C.

Recall that any elliptic curve can be written in the form:

E : y2 = 4(x− t1)3 − t2(x− t1)− t3 (4.1)

which is known as the Weierstrass form. This curve is smooth if and only if ∆ := t3
2 −27t3 ̸= 0.

Recall also that H1
dR (E) is two-dimensional. We can then choose a basis of differential forms α

and ω for which <ω,α>= 1. Here, <,> is the intersection product:

<ω,α>= 1
2πi

∫
E
ω∧α

If we choose α to be a regular form given by dx
y in the coordinates above, we can take ω to

be xα. It is possible to prove that:
<ω,α>= 1

With this in hands, we can define T :=Spec(C[t1, t2, t3, 1
∆ ]) and consider X → T with X being

the family of curves E equipped with forms as above. Notice that, although t1 seems unneces-
sary, but, if we consider an equation without t1, this variable would appear as parametrizing
a family of differential forms,

ωt1 = x
dx
y

+ t1
dx
y

,

for which we get 〈ωt1 ,α〉 = 1.
By a change of coordinates x 7→ x− t1, we get the third parameter as above.

4.1.2 The Gauss-Manin Connection
We want to study periods on E, that is, integrals of differential forms over cycles. In particular,
we want to study: ∫

δ

dx
y

and
∫
δ

xdx
y

,

where δ ∈ H1(E). Notice that these periods give rise to regular functions on T. Thinking
analytically, T is an open set in C3 and these functions are holomorphic maps. The Gauss-
Manin connection gives relations between these integrals: d

(∫
δ

dx
y

)
d

(∫
δ

xdx
y

)=∇GM

[ ∫
δ

dx
y∫

δ
xdx

y

]

where ∇GM is the Gauss-Manin connection written as a matrix of differential forms in Ω1(T)
in the coordinates t1, t2, t3. It is given by:

∇GM = 1
∆

( −3
2 t1θ− 1

12 d∆ 3
2θ

∆dt1 − 1
6 t1d∆− (3

2 t2
1 + 1

8 t2
)
θ 3

2 t1θ+ 1
12 d∆

)
∆= 27t2

3 − t3
2,θ = 3t3dt2 −2t2dt3
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∇GM can be regarded as a connection on the so-called de Rham vector bundle on T with
fibers given by the de Rham cohomology of each curve (seen as a point of T). But, for now, it
suffices to see it as the relation between the derivatives with respect to coordinates t1, t2, t3
and the differential forms α and ω.

4.1.3 Period Map and Ramanujan Vector Field
Choose two cycles δ1 and δ2 which form a symplectic basis of the homology with 〈δ1,δ2〉 = −1.
For each elliptic curve of the family 4.1, one can compute the periods in the matrix:( ∫

δ1
dx
y

∫
δ1

xdx
y∫

δ2
dx
y

∫
δ2

xdx
y

)
(4.2)

It can be proven that this matrix belongs to the following set:

P :=
{(

x1 x2
x3 x4

)
| xi ∈C, x1x4 − x2x3 = 1,ℑ (x1x3)> 0

}
,

which has two natural actions. One left-SL(2,Z) action and a right action of the group G, which
is given by:

G :=
{(

r s
0 r−1

)∣∣∣∣ r ∈C∗ and s ∈C
}

Note that G also acts on T by multiplying the differential forms:

g • (E,α,ω)= (E, rα, sα+ r−1ω)

Lemma 4.1. In the chart (t1, t2, t3), the action is given by:

g • (t1, t2, t3)= (r−2t1 + sr−1, r−4t2, r−6t3).

Proof. Indeed, these coordinates correspond to the curve:

E : y2 −4
(
x− sr−1 − t1r−2)3 + t2r−4 (

x− sr−1 − t1r−2)+ t3r−6 = 0.

and the forms α= dx
y and ω= xdx

y . Multiplying the equation by r6, we get:

E : (r3 y)2 −4
(
xr2 − sr− t1

)3 + t2
(
r2x− sr− t1

)+ t3 = 0.

This means that the triple (E,α,ω), after the change of coordinates x′ = r2x− rs and y′ = r3 y,
is the curve (E′,α,ω). It suffices to verify that α = rα′ and ω = sα′+ r−1ω′, where α′ = dx′

y′ and

ω′ = x′dx′
y′ , since (E′,α′,ω′) corresponds to coordinates (t1, t2, t3).

α′ = d(r2x− rs)
r3 y

= r2dx
r3 y

= r−1 dx
y

= r−1α =⇒ α= rα′

ω′ = (r2x− rs)d(r2x− rs)
r3 y

=⇒ r4 xdx
r3 y

− sr3 dx
r3 y

= r
xdx

y
− s

dx
y

= rω− sα

As α= rα′, we have:
ω′ = rω− srα′ = r(ω− sα′) =⇒ ω= r−1ω′+ sα′
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After factoring by the SL(2,Z) action, we can define a map:

ρ : T → P

SL(2,Z)

(E,α,ω) 7→ 1p−2πi

(∫
δ1
α

∫
δ1
ω∫

δ2
α

∫
δ2
ω

)
which is called period map.

Theorem 4.2. The period map ρ is a local biholomorphism and satisfy:

ρ(g •K)= ρ(K)g, K ∈ T, g ∈G.

Proof. To see that it is a local biholomorphism, we just need to compute the derivative and
show it is invertible. This can be done via the Gauss-Manin connection since we are differenti-
ating through the integral sign.

For the other statement, we simply compute:

ρ(K)g = 1p−2πi

(∫
δ1
α

∫
δ1
ω∫

δ2
α

∫
δ2
ω

)
·
(
r s
0 r−1

)
= 1p−2πi

(∫
δ1

rα
∫
δ1

sα+ r−1ω∫
δ2

rα
∫
δ2

sα+ r−1ω

)
= ρ(g •K)

Now, let H be the upper half plane {z ∈C | ℑ(z)> 0}. Observe that H can be included in P by
the map z 7→ ( z −1

1 0
)
. H is special in this context because it can be shown that the orbits of G are

in bijection withH, that is, any element can be written in the form
( z −1

1 0
)

after multiplication by
g ∈G. In other words, this is the same as saying that each point of H corresponds to an elliptic
curve (since we are identifying all the enhancements). Using that ρ is a local biholomorphism
and that H is simply connected, we can define a map

γ= (γ1,γ2,γ3) :H→ T

after lifting the inclusion H→ P
SL(2,Z)

Lemma 4.3. The coordinates of γ will satisfy functional equations:

(cz+d)−2iγi

(
az+b
cz+d

)
= γi(z), i = 2,3

and

(cz+d)−2γ1

(
az+b
cz+d

)
= γ1(z)− c(cz+d)−1, z ∈H,

(
a b
c d

)
∈SL(2,Z).

This functional equations are exactly the equations satisfied by quasimodular forms, which
show that γi are quasimodular forms.

Proof. To see this, one could use the previous theorem. Firstly, we write az+b
cz+d as a matrix and

realize that it can be written as a product:(az+b
cz+d −1

1 0

)
=

(
az+b −a
cz+d −c

)
·
(
(cz+d)−1 c

0 cz+d

)
=

=
(
a b
c d

)(
z −1
1 0

)(
(cz+d)−1 c

0 cz+d

)
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This means that, by the theorem above, we can take h out of the brackets. Modulo the left
action of SL(2,Z), we have that

γ

(
az+b
cz+d

)
= ρ−1

((
a b
c d

)(
z −1
1 0

))
•h = γ(z)•h

where h =
(

(cz+d)−1 c
0 cz+d

)
and we have used the previous theorem.

To end, it suffices to use the formula that we have for the action in coordinates, and then
isolate γi(z).

γ(z)•h = (
(cz+d)2γ1(z)+ c(cz+d), (cz+d)4γ2(z), (cz+d)6γ3(z)

)

To finish this section, we want to understand what would be the pushforward of the vector
field given by the derivative ∂

∂z in H by the map γ, in order to find nice differential equations.
Our first idea is to identify ∂

∂z on H with ∂
∂x1

on P . But one can rapidly notice that the
second vector field is not SL(2,Z) invariant and, therefore, is not defined on the quotient. To
correct this, we consider the vector field:

X =−x2
∂

∂x1
− x4

∂

∂x3

which is invariant under the action and, when we restrict ourselves to H corresponds to ∂
∂z . Let

R be the pullback of the vector field X by ρ (or the pushforward by γ), then:

R
∫
δi

α=−
∫
δi

ω

and
R

∫
δi

ω= 0

In terms of the Gauss-Manin connection:

∇Rα=ω
∇Rω= 0

By direct computation, we find that there is only one vector field that satisfies the two equali-
ties above and it is given by:

R =
(
t2
1 −

1
12

t2

)
∂

∂t1
+ (4t1t2 −6t3)

∂

∂t2
+

(
6t1t3 − 1

3
t2
2

)
∂

∂t3

The vector field R is called Ramanujan vector field and, as it corresponds to ∂
∂z via γ, we get

the differential equations:

dγ1

dz
= γ2

1 −
1

12
γ2,

dγ2

dz
= 4γ1γ2 −6γ3,

dγ3

dz
= 6γ1γ3 − 1

3
γ2

2
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4.1.4 The Picard-Fuchs Equation and Eisenstein Series
To relate what we did before with the Eisenstein series, we need to solve the Ramanujan
differential equations. This was first done by Ramanujan himself, who verified that the famous
Eisenstein series satisfy the equations above. These are given by:

E2i(q) := (
1+bi

∑∞
n=1

(∑
d|n d2i−1) qn)

, i = 1,2,3
(b1,b2,b3)= (−24,240,−504)

These three series form a basis for the space of solutions of the Ramanujan system of dif-
ferential equations. We are now going to explain how to obtain them from the period map and
to get another explicit formula for them.

To compute some of the above periods explicitly, we consider a one-parameter family of
elliptic curves:

Eψ : y2 = 4x3 +12x−4ψ (4.3)

By making use of the Gauss-Manin connection, it is possible to see that the periods satisfy
differential equations. For instance,

∫
δi

dx
y satisfy:

5
36

I +2ψI ′+ (ψ2 −4)I ′′ = 0 (4.4)

and an analogous statement is true for ω. This equation is known as Picard-Fuchs equation.
From all we did above, it is possible to recover the famous Eisenstein series, which generate
the space of (quasi-)modular forms. First, we solve the Picard-Fuchs equation 4.4.

Theorem 4.4. The Picard-Fuchs equation 4.4 has a basis of two solutions: one is holomorphic
at ψ= 2 and the other one at ψ=−2. If we change coordinates z = ψ−2

4 , we get holomorphic solu-
tions at 0 and 1. These solutions correspond to the periods I2 =

∫
δ2
α and I1 =

∫
δ1
α, respectively,

and can be explicitly computed:∫
δ2

dx
y

= πp
3

F
(
1
6

,
5
6

,1 | ψ+2
4

)
= πp

3
F

(
1
6

,
5
6

,1 | z
)
,∫

δ1

dx
y

= iπp
3

F
(
1
6

,
5
6

,1 | −ψ+2
4

)
= iπp

3
F

(
1
6

,
5
6

,1 | 1− z
)
,

where

F(a,b, c | z)=
∞∑

n=0

(a)n(b)n

(c)nn!
zn,

with (a)n = a(a+1)(a+2) . . . (a+n−1) and (a)0 = 1.

Proof. We can use the Frobenius method, since all the coefficients are holomorphic. We com-
pute the first solution, which is holomorphic at zero. After writing the solution as a power
series

I(z)=
∞∑

n=0
Anzn

and substituting into the differential equation, we get the following computation

5
36

I+(2z−1)I ′+ z(z−1)I ′′ = 0 =⇒

=⇒ 5
36

An +2nAn − (n+1)An+1 +n(n−1)An − (n+1)nAn+1 = 0

Now, we get a recursion:

An+1 = 5+36n+36n2

36(n+1)2 An
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To solve this recursion, we need to compute A0, which is simply the integral for ψ=−2:∫ ∞

2

dxp
4x3 +12−8

=
∫ ∞

2

dx√
4(x+1)2(x−2)

=
∫ ∞

2

dx
2(x−1)

p
x−2

= πp
3

With the recursion and the first term, it is easy to prove by induction that:

∫
δ2

dx
y

= πp
3

∞∑
n=0

(1
6

)
n

(5
6

)
n

(n!)2 zn

Now, we repeat the process for a series
∑

An(z−1)n.

Using the same idea for ω, we get the matrix below, after solving another differential equa-
tion: ( ∫

δ1
dx
y

∫
δ2

dx
y∫

δ1
xdx

y
∫
δ2

xdx
y

)
=

(
πip

3
F

(1
6 , 5

6 ,1 | 1− z
)

πp
3
F

(1
6 , 5

6 ,1 | z
)

πip
3
F

(−1
6 , 7

6 ,1 | 1− z
)− πp

3
F

(−1
6 , 7

6 ,1 | z
) )

But how do the Eisenstein series come into play? We again make use of the relationship of
the period map and the action of the group G as we presented in Theorem 1.2. We can write:

1p−2πi

(∫
δ1
α

∫
δ1
ω∫

δ2
α

∫
δ2
ω

)(
1p−2πi

∫
δ2
α

)−1 − 1p−2πi

∫
δ2
ω

0 1p−2πi

∫
δ2
α

=
 ∫

δ1
α∫

δ2
α

−1

1 0


This implies that, for any triple (E,α,ω) ∈ T given by coordinates (t1, t2, t3), we have:

γ

(∫
δ1
α∫

δ2
α

)
= (t1, t2, t3)•

(
1p−2πi

∫
δ2
α

)−1 − 1p−2πi

∫
δ2
ω

0 1p−2πi

∫
δ2
α

=

(
−t1(2πi)−1

(∫
δ2

α

)2
+ (2πi)−1

∫
δ2

ω

∫
δ2

α, t2 · (2πi)−2
(∫
δ2

α

)4
,−t3(2πi)−3

(∫
δ2

α

)6)
In the case of the family Eψ, we have t1 = 0, t2 = 12 and t3 =−4ψ. Therefore, we get:

γ

(∫
δ1
α∫

δ2
α

)
=

(
(2πi)−1

∫
δ2

ω

∫
δ2

α, 12 · (2πi)−2
(∫
δ2

α

)4
,4ψ(2πi)−3

(∫
δ2

α

)6)

It is natural now to consider the new coordinate τ :=
∫
δ1
α∫

δ2
α

. Actually, we can consider τ as a

map ψ 7→ τ(ψ) =
∫
δ1
α∫

δ2
α

. In this case, τ is called mirror map or Schwartz map. Combining

everything, we get the following result:

Theorem 4.5. After changing coordinates from ψ to τ, we get that:(∫
δ2

α

)
(τ) ·

(∫
δ2

ω

)
(τ)= 2πiE2(τ)(∫

δ2

α

)4
(τ)= 4π2E4(τ)

(1−2ψ)
(∫
δ2

α

)4
(τ)=−8π3iE6(τ)
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Proof. The proof is based on the fact that the Eisenstein series are solutions of the Ramanujan
differential equations. Then, the coordinates of γ(τ) are going to be the Eisenstein series in the
coordinate τ. The rest is just a question of isolating the periods.

The lesson we take from all this is that, in general, it might be interesting to look at the
quotient of solutions of other Picard-Fuchs differential equations (for example in the case of
the Mirror Quintic as below) and use this as a new coordinate. Of course, we will not always
get that this quotient is in the upper half plane, but we can always define q = e2πiτ and make
q expansions.

4.2 Mirror Quintic Family and Calabi-Yau Modular Forms

Here, we reproduce the results from the paper [56] and the book [57]. Those are the general-
ization of quasimodular forms to the mirror quintic family.

4.2.1 The Mirror Quintic Family

In this section, we consider the family of threefolds which is the mirror, in the sense of Mirror
Symmetry, to a general quintic.

Definition 4.6. Let ψ5 ̸= 1 and let G be the group given by

G =
{

(a0, . . . ,a4) ∈Z5
5 :

∑
i

ai ≡ 0 mod 5

}/
Z5 , (4.5)

where Z5 is embedded diagonally. This group acts on P4 in the natural way:

(a0, . . . ,a4)• [x0, . . . , x4] 7→ [µa0 x0 : . . .µa4 x4],

where µ is a primitive fifth root of the unit. For us, a mirror quintic Xψ is the resolution of
singularities of the quotient{

[x0 : x1 : x2 : x3 : x4] ∈P4 | x5
0 + x5

1 + x5
2 + x5

3 + x5
4 −5ψx0x1x2x3x4 = 0

}
/G. (4.6)

After the quotient and the resolution, one can observe that the varieties obtained are
Calabi-Yau. For details, see [28] or [17, Section 2.2]. For this family, one could compute the
rank of its cohomologies. We get that dimH3

dR(X )= 4 and dimH2
dR(X )= 101. Its hodge diamond

is given by:

1
0 0

0 101 0
1 1 1 1

0 101 0
0 0

1

.

Employing the same process explained above for the elliptic curves, we consider the param-
eter space of enhanced mirror quintics.
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Definition 4.7. An enhanced mirror quintic consists of a pair (X ,B), where X is an element of
the mirror quintic family and B = {α1, . . . ,α4} is a basis of its third algebraic de Rham cohomol-
ogy, such that

αi ∈ F4−iH3
dR(X )\ F5−iH3

dR(X ), ∀i > 0; and [〈αi,α j〉]=Φ;

where

Φ=


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


Proposition 4.8. The parameter space for enhanced mirror quintics is given by:

T =Spec

(
C

[
t0, t1, t2, t3, t4, t5, t6,

1
t5t4(t4 − t5

0)

])
.

Proof. Firstly, let us consider only the space of pairs (X ,ω), where ω is a holomorphic 3-form on
X . There are affine coordinates for this space: one can associate coordinates (t0, t4) to a mirror
quintic Xψ, with ψ−5 = t4

t5
0
.

X t0,t4 := { f (x)= 0}/G (4.7)

f (x) :=−t4x5
0 − x5

1 − x5
2 − x5

3 − x5
4 +5t0x0x1x2x3x4. (4.8)

In the affine space x0 = 1, the 3-form dependent on (t0, t4) is the form induced on the resolution
of the quotient via the residue form

ω1 := dx1 ∧dx2 ∧dx3 ∧dx4

d f

which is invariant after the action of the group G. Note that these coordinates are only defined
if t5

0 ̸= t4 and t4 ̸= 0. Now, starting from ω, via derivation w.r.t t0, we can get a basis W , since
each derivative is an element of the next piece of the Hodge Filtration. Then, we write a base
change matrix:

A =


1 0 0 0
a b 0 0
c t6 t5 0
t1 t2 t3 d


By using that the intersection product must be constant and by computing the intersection
product of the basis W , one can get relations among a,b, c,d and the ti. That gives us the 6
coordinates. As t5 has to be different from 0 (otherwise the matrix is not a change of basis), we
get the result.

4.2.2 The Gauss-Manin Connection and the Picard-Fuchs Equation
Again, as in the case of elliptic curves, we have the Gauss-Manin connection acting on the
cohomology bundle and we can think of periods as functions on T. They satisfy a differential
equation computed in [14] known as the Picard-Fuchs equation and the Gauss-Manin connec-
tion can be computed from it. If I = ∫

δω, where ω is a regular 3-form and δ is a 3 cycle, we have
that I satisfy

θ4 − z
(
θ+ 1

5

)(
θ+ 2

5

)(
θ+ 3

5

)(
θ+ 4

5

)
= 0
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where θ = z ∂
∂z and z is the parameter of the family and correspond to ψ−5.

It is important to note that I is a function in T, that is, it is a function only on the coordinate
z, since it only depends on the regular form ω and not on the other forms of the basis. To
compute the Gauss-Manin conection, we start from ω and consider the basis of the cohomology
given by ∂iω

∂zi = ∇i
∂ω
∂z
ω. Then the Gauss-Manin connection in this basis is simply the matrix

whose first three rows are [0100], [0010] and [0001] and the last row is the coefficients of the
equation. Then, as we want to consider the connection in the space T, we need to change to a
basis satisfying the conditions in the definition 4.7 using the matrix given in (4.2.1).

Solving the equation above by the Frobenius method and making a base change, we get a
basis of the space of solutions ψi(z), i = 1,2,3,4 which are exactly the periods I i =

∫
δi
ω, where

δi form a symplectic basis of the homology. These solutions can be made explicit:

Theorem 4.9. The solutions of the Picard-Fuchs differential equation are given by hypergeo-
metric power series as follows:

ψi(z)= 1
i!
∂i

∂εi

(
5−5εF(ε, z)

)
,
∣∣∣∣
ε=0

j = 0,1,2,3,

where

F(ε, z) :=
∞∑

n=0

(1
5 +ε

)
n

(2
5 +ε

)
n

(3
5 +ε

)
n

(4
5 +ε

)
n

(1+ε)4
n

zε+n

Proof. The idea is, as before, to write the solution as a series and substitute it in the equa-
tion. Then prove by induction that the recursion relation between the coefficients gives us the
formulas above.

4.2.3 The Period Map and the Vector Field
We start by choosing a symplectic basis of the homology H3(X ,Z), for each element of the
mirror quintic family. In the same way as in (4.2), we define:

P =
[∫

δi

α j

]
,

where α j are elements of a basis satisfying the conditions of Definition 4.7. Again using the
properties of the basis and the fact that the δi ’s form a symplectic basis, we get many polyno-
mial relations among the entries of P. This allows us to define a period domain P . There is an
action of the symplectic group Sp(4,Z) on P that controls the choice of the symplectic basis.
There is also an action of the algebraic group G, which is the group that acts on T by changing
the basis.

G := {
g = [

g i j
]
4×4 ∈GL(4,C) | g i j = 0, for j < i and gtΦg =Φ}

,g =


g11 g12 g13 g14
0 g22 g23 g24
0 0 g33 g34
0 0 0 g44

 , g i j ∈C


g11 g44 = 1,
g22 g33 = 1,

g12 g44 + g22 g34 = 0,
g13 g44 + g23 g34 − g24 g33 = 0,


 .

One can see that there is a natural one-dimensional locus L ⊂P which is in bijection with the
orbits of G. The locus L is given by matrices of the form (τ’s can be written in terms of periods):

τ=


τ0 1 0 0
1 0 0 0
τ1 τ3 1 0
τ2 −τ0τ3 +τ1 −τ0 1

 ,
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with relations τ3 = ∂τ1
∂τ0

, ∂τ2
∂τ0

= τ1 −τ0
∂τ1
∂τ0

.
Restricted to this locus, if one computes the Gauss-Manin connection restricted to the vector

field ∂
∂τ0

, we get the matrix: 
0 1 0 0
0 0 ∂τ3

∂τ0
0

0 0 0 −1
0 0 0 0

 .

Pulling back to T and using the explicit formula for the Gauss-Manin connection, we get
the existence of a unique vector field R and function Y for which

∇R =


0 1 0 0
0 0 Y 0
0 0 0 −1
0 0 0 0

 .

The vector field R is given by the following system of differential equations, where ti are the
coordinates of T.

∂

∂τ
t0 = q

∂

∂q
t0 = 1

t5

(
6 ·54t5

0 + t0t3 −54t4
)

∂

∂τ
t1 = q

∂

∂q
t1 = 1

t5

(−58t6
0 +55t4

0t1 +58t0t4 + t1t3
)

∂

∂τ
t2 = q

∂

∂q
t2 = 1

t5

(−3 ·59t7
0 −54t5

0t1 +2 ·55t4
0t2 +3 ·59t2

0t4 +54t1t4 +2t2t3
)

∂

∂τ
t3 = q

∂

∂q
t3 = 1

t5

(−510t8
0 −54t5

0t2 +3 ·55t4
0t3 +510t3

0t4 +54t2t4 +3t2
3
)

∂

∂τ
t4 = q

∂

∂q
t4 = 1

t5

(
56t4

0t4 +5t3t4
)

∂

∂τ
t5 = q

∂

∂q
t5 = 1

t5

(−54t5
0t6 +3 ·55t4

0t5 +2t3t5 +54t4t6
)

∂

∂τ
t6 = q

∂

∂q
t6 = 1

t5

(
3 ·55t4

0t6 −55t3
0t5 −2t2t5 +3t3t6

)
Also, Y can be proved, via computations with periods, to be the Yukawa coupling that, in
coordinates can be computed as follows:

58 (
t4 − t5

0
)2

t3
5

Finally, restricting to L, we can solve the system of equations associated to R.

Theorem 4.10. The seven functions

t0 = x21

t1 = 54x21 ((6z−1)x21 +5(11z−1)x22 +25(6z−1)x23 +125(z−1)x24)

t2 = 54x2
21 ((2z−7)x21 +15(z−1)x22 +25(z−1)x23)

t3 = 54x3
21 ((z−6)x21 +5(z−1)x22) ,

t4 = zx5
21

t5 = 55(z−1)x2
21 (x12x21 − x11x22)

t6 = 55(z−1)x21 (3(x12x21 − x11x22)+5(x13x21 − x11x23))
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are holomorphic at z = 0 and satisfy the system of differential equations associated with R,
where xi j are functions of the solutions of the Picard-Fuchs equation given by:

x11
x21
x31
x41

=


0 0 1 0
0 0 0 1
0 5 5

2 −25
12

−5 0 −25
12 200 ζ(3)

(2πi)3




1
54ψ3

2πi
54 ψ2

(2πi)2
54 ψ1

(2πi)3
54 ψ0

 .

The proof of the theorem above is purely computational. The functions on L are not quasi-
modular forms as in the case of the elliptic curve, but satisfy a system of differential equations:
they are, therefore, generalizations of modular forms. Following this idea, the ti would corre-
spond to Eisenstein series. We now move to the computations of the invariants.

To finish, the lesson we took from all this is that we can, starting from a family and basis for
each de Rham cohomology, we can consider periods in this basis, find a natural one-dimensional
locus in the period domain, pull the vector space on this locus back and find a unique vector
space on T. This gives us a system of differential equations that explains why ti ’s are gener-
alizations of modular forms. Restricting to L, one can use the mirror map to get q-expansions
for ti. In the next chapter, we do the same thing but for the case of Open Gromov-Witten
invariants.



Chapter 5

The Case of Open Gromov-Witten
Invariants

In the previous chapter, we considered a geometric interpretation for quasimodular forms and
explained how to generalize this idea to get Calabi-Yau modular forms. Our contribution is
to execute the ideas from the GMCD program for the case of Open Gromov-Witten invariants.
As explained in chapter 1, these invariants count curves with boundary on a Lagrangian in
a generic quintic threefold and can be computed by looking at "relative periods" of the mirror
quintic family with boundary on the union of two conic curves. This means that instead of
considering absolute cohomology and the Gauss-Manin connection on the mirror quintic family,
we take a relative version of the algebraic de Rham cohomology H3

dR(X ,C+∪C−) and a relative
version of the Gauss-Manin connection defined in Chapter 2. Then, we construct a moduli
space Top of triples (W ,C±, [α0, . . . ,α4]), where W is an element of the mirror family, C± is
the pair of conic curves on each element of the family and [α0, . . . ,α4] is a basis of the third
relative algebraic de Rham cohomology which respects the mixed Hodge structure that can be
defined on the relative cohomology as in Chapter 3. Before us, the idea of considering mixed
Hodge structures and relative cohomology in the GMCD framework was examined in the case
of elliptic curves with two fixed points in the paper [15], in which the authors recovered the
theory of Jacobi forms of index zero, and in the paper [5], where the authors considered affine
Calabi-Yau varieties.

5.1 Results

Definition 5.1. A relatively enhanced mirror quintic is simply a triple

(X ,C±, [α0, . . . ,α4]),

where X is a mirror quintic, C± is the pair of homologous curves cited above and specified in
(5.4) and [α0, . . . ,α4] is a basis of H3

dR(X ,C+∪C−) satisfying the following properties. Let δ0 be
any homology class connecting the two curves. Then the properties read:

(i) αi ∈ F4−i \ F5−i, i > 0;

(ii) [〈αi,α j〉]=Φ;

(iii) α0 ∈ F1 \ F2;

(iv) α0 ∈W2;

(v)
∫
δ0
α0 = 1;

(vi) αi ∈W3 \W2, i > 0.

51
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where Φ=


0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 −1 0 0
0 −1 0 0 0

.

Although condition (v) above seems to depend on the choice of δ0, it is an algebraic condition
that is not influenced by this choice. Indeed, α0 ends up being a class on the image of the map
H2

dR(C+∪C−) → H3
dR(W ,C+∪C−) and, therefore, its integral over any homology class depends

only on the boundary of the homology class.

Theorem 5.2. Relatively enhanced mirror quintics can be parametrized by the nine coordinates
in affine space given by

Top :=Spec

(
C

[
s0, s1, s2, s3, s4, s5, s6, s7, s8,

1
s5(s10

0 − s10
4 )s0s4

])
. (5.1)

For an explicit description of the parametrization above, see the proof of Theorem 5.2 in
Section 5.3.1. With this moduli space in hands, it is possible to compute a differential equa-
tion relating these generators si with open Gromov-Witten invariants and the virtual count of
disks.

Theorem 5.3. Consider the space Top defined above. Let A be the Gauss-Manin connection
matrix in the basis α. There is a unique vector field R, for which the Gauss-Manin connection
composed with it is given, in the basis α, by

AR =


0 0 0 0 0
0 0 1 0 0
F 0 0 Y 0
0 0 0 0 −1
0 0 0 0 0

 ,

for regular functions Y and F in Top. The expression of R, F and Y in the coordinates given in
Theorem 5.2 are

Y= 58 (
s10

4 − s10
0

)2

s3
5

, F=−s7Y, (5.2)

R :



ṡ0 = 1
2s0s5

(
6 ·54s10

0 + s2
0s3 −54s10

4
)

ṡ1 = 1
s5

(−58s12
0 +55s8

0s1 +58s2
0s10

4 + s1s3
)

ṡ2 = 1
s5

(−3 ·59s14
0 −54s10

0 s1 +2 ·55s8
0s2 +3 ·59s4

0s10
4 +54s1s10

4 +2s2s3
)

ṡ3 = 1
s5

(−510s16
0 −54s10

0 s2 +3 ·55s8
0s3 +510s6

0s10
4 +54s2s10

4 +3s2
3
)

ṡ4 = 1
10s5

(
56s8

0s4 +5s3s4
)

ṡ5 = 1
s5

(−54s10
0 s6 +3 ·55s8

0s5 +2s3s5 +54s10
4 s6

)
ṡ6 = 1

s5

(
3 ·55s8

0s6 −55s6
0s5 −2s2s5 +3s3s6

)
ṡ7 =−s8

ṡ8 =−512 (
s10

0 − s10
4

)
s5

· 15
8

(
s4

s0

)5 1

25
p

5

(5.3)
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Finally, looking at the above equation, we have that each s j has a weight, given by the degree of
each equation:

w0 = 1
2

, w1 = 2, w2 = 3, w3 = 4, w4 = 1
2

, w5 = 2, w6 = 1, w7 =−1, w8 = 1.

The proof of Theorem 5.3 is computational. The interesting part about it is that, if we
consider si functions on a variable q, take the derivation to be 5q d

dq , fix initial values s0,0 := 1p
5
,

s0,1 := 12
p

5 and s0,4 := 0 and allow fractional exponents, we get

−53Y= 5+2875q+4876875q2 +8564575000q3 +·· · =
∞∑

d=0
ndd3 qd

1− qd

4
53F(q) := 30q1/2 +13800q3/2 +27206280q5/2 +47823842250q7/2 + ...=

= ∑
d odd

ndisk
d d2 qd/2

1− qd ,

where nd are the virtual counts of rational curves of degree d on a generic quintic threefold
(see [14] and [56]) and ndisk

d are the virtual counts of disks with boundary on a lagragian of
a quintic threefold (see [66] and [62]). The q-expansions for all functions si can be found on
the author’s webpage1. Notice that s1, s2, s3, s4, s5 and s6 are the same as the corresponding ti
from [56, Theorem 3] and that s2

0 = t0 and s10
4 = t4.

5.2 Moduli Space
From the Elliptic curve case and the computation of closed Gromov-Witten invariants in Chap-
ter 4, our goal is to construct an analogous moduli space. We are going to assign coordinates
for the space of triples (Xψ,C±,ω), where ω is a holomorphic differential 3-form on Xψ. From
Section 4.2.1, we already have coordinates t0 and t4 corresponding to X and ω. The curves C±
also depend on these coordinates, but, to avoid taking tenth and square roots, we introduce
new coordinates s0 and s4 which satisfy s2

0 = t0 and s10
4 = t4. In these coordinates the curves

are the resolution of singularities of the quotient of

C± =
{
s2

4x0 + x1 = 0, x2 + x3 = 0, s4x4
2 ±

p
5s0x1x3 = 0

}
⊂ X t0,t4 , (5.4)

by the group G. In the appendix of [54], they give an explicit way to solve these singularities.
We can, therefore, associate a pair (s0, s4) to a triple (Xs0,s4 ,C±,ω). Of course, this association
is only defined when s10

4 ̸= s10
0 and s4s0 ̸= 0, since for s0 = 0 both curves C+ and C− are equal.

We end up with a quasi affine space Sop := C2 \ {s0s4(s10
0 − s10

4 ) = 0} parametrizing the triples
(Xs0,s4 ,C±,ω). This parametrization has an important property which we state below:

Proposition 5.4. Let r ∈C∗. If (s0, s4) is the point corresponding to (X ,ω,C) ∈ M, then (rs0, rs4)
is the point corresponding to (X ,C, r−2ω).

Proof. We know that the isomorphism (x0, x1, x2, x3, x4) 7→ (x0, rx1, rx2, rx3, rx4) between Xs0,s4 =
X t0,t4 and Xrs0,rs4 = Xr2t0,r10t4

takes ω(t0, t4) to r−2ω(r2t0, r10t4) (see [56], sec. 2.1). Using that
t0 = s2

0 and t4 = s10
4 , we have our result. We just need to check that it maps the curve C to its

correspondent. Indeed, we have

Crs0,rs4 =
{
r2s2

4x0 + x1 = 0, x2 + x3 = 0, rs4x2
4 + rs0

p
5x1x3 = 0

}
⊂ Xrs0,rs4

1www.impa.br/~felipe.espreafico/expansionsi

www.impa.br/~felipe.espreafico/expansionsi
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and
Cs0,s4 =

{
s2

4x0 + x1 = 0, x2 + x3 = 0, s4x2
4 + s0

p
5x1x3 = 0

}
⊂ Xs0,s4 .

Taking a point of the second curve and applying the isomorphism, we have that the equations
of the first one are satisfied.

r2s2
4x0 + (r2x1)= r2(s2

4x0 + x1)= 0,

(r2x2)+ (r2x3)= r2(x2 + x3)= 0,

rs4(r2x4)2 + rs0
p

5(r2x1)(r2x3)= r5(s4x2
4 + s0

p
5x1x3)= 0.

This finishes the proof.

Considering the zero locus of the function f given in (4.7) in the product P4 ×Sop, we get a
family X → Sop. Now, C± induces a subfamily Y ⊂ X corresponding to the curves. Using the
definitions of the Gauss-Manin connection and Algebraic Relative Cohomology from chapter
2, we can already prove the main results. For this, as we said, we need the non-homogenous
version of the Picard-Fuchs equation

θ4 − z
(
θ+ 1

5

)(
θ+ 2

5

)(
θ+ 3

5

)(
θ+ 4

5

)
= 15

p
5−5z
8

(5.5)

satisfied by the integral of a holomorphic three-form on Xψ over the homology class connecting
the two curves C±. Above, z =ψ−5 and θ = z ∂

∂z . The equation in the form above is in [62, page
1170] using coordinates t with z = 55et. Observe that if we consider the right-hand side of
(5.5) to be zero, we get the classical equation appearing on [14] for which the periods given by
integrals of the holomorphic three form over absolute homology classes are solutions.

Due to what we discussed in Chapters 2 and 3, there is a natural Mixed Hodge Structure
in H3

dR(X ,Y ) and it interacts with the Gauss-Manin connection in a natural way, since the
connection commutes with the long exact sequence (see Proposition 2.12). In our case, things
are even better since we have some vanishing on certain cohomologies.

Proposition 5.5. For Y = C+∪C− and X a mirror quintic, the image of the map α : H2
dR(Y )→

H3
dR(X ,Y ) defined via the long exact sequence is one-dimensional and it is contained in F1H3

dR(X ,Y )\
F2H3

dR(X ,Y ), where F represents the Hodge filtration. Also, this image is exactly the second
piece of the weight filtration W2(H3

dR(X ,Y )). In particular, any generator of this image satisfies
properties (iii) and (iv) of Definition 5.1.

Proof. Recall that, as Y is the union of two P1, it has F2H2
dR(Y ) = 0 and F1H2

dR(Y ) = H2
dR(Y ).

Therefore, as the long exact sequence of the pair is a sequence of mixed Hodge structures,
we conclude that the image is contained in F1 and not in F2 (since we have α(F p(H2

dR(Y ))) =
Im(α)∩F pH3

dR(X ,Y )). For the part about the weight filtration, we just need to use that the
weight filtration for H2

dR(Y ) is given by W0 = 0, W1 = 0 and Wk = H2
dR(Y ) for k ≥ 2. Therefore,

by again using that the exact sequence is a sequence of mixed Hodge structures, we conclude
that the image of α is W2H3

dR(X ,Y ).

5.3 Proofs of the Main Theorems

In this section, our goal is to prove the two main theorems stated in Section 5.1. For simplicity,
throughout this section, we keep denoting Y = C+∪C−.
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5.3.1 Proof of Theorem 5.2
Consider the basis W = {ω1, . . . ,ω4} for H3

dR(X ), withω1 a holomorphic 3-form andωi :=∇ ∂
∂t0

(ωi−1),

where t0 := s2
0 and ∇ is the Gauss-Manin connection on the absolute cohomology (see Section

5.2). Notice that we use derivatives with respect to t0 instead of s0 since it makes it easier to
compare with the absolute case. Of course, we can go from t0 to s0 via the relation

∂

∂t0
= 1

2s0

∂

∂s0
.

Using the fact that the map H3
dR(X ,Y ) → H3

dR(X ) is surjective, it is possible to choose
elements ω1, . . . ,ω4 ∈ H3

dR(X ,Y ) corresponding to the basis W . Then, we choose a generator of
the image of the connecting morphism Im(H2

dR(Y ) → H3
dR(X ,Y )) and call it ω0. This generator

is chosen to be the image of the Poincaré dual of the difference of the homology classes [C+]
and [C−]. In this way, we get that the integral of ω0 over the homology class connecting the
two curves is 1. Now, consider the matrix:

S =


1 0 0 0 0
0 1 0 0 0
0 a b 0 0
s7 c s6 s5 0
s8 s1 s2 s3 d

 (5.6)

and assume that it is invertible, which implies s5 ̸= 0. The base α = Sω satisfies all proper-
ties on Definition 5.1 except for (ii). Indeed, by Proposition 5.5 above, (iii) and (iv) are satis-
fied and, as the map H3(X ,Y ) → H3(X ) preserves filtrations and the Gauss-Manin connection
sends F i to F i−1, we have condition (i). Condition (v) is satisfied by construction. Demand-
ing S[〈ωi,ω j〉]Str = Φ, that is, condition (ii), we get equations relating a,b, c,d and the other
variables:

cb− s6a = 3125s6
0 + s2, (5.7)

d =−bs5, (5.8)

s5a =−3125s8
0 − s3, (5.9)

d = 625
(
s10

4 − s10
0

)
. (5.10)

To perform this computation, we make use of the intersection product computed in [56, Propo-
sition 3] and the fact that α0 is degenerate for the intersection product. These relations imply
that we can drop the variables a, b, c and d and only consider, besides s0 and s4, five coor-
dinates s1, s2, s3, s5, s6, which are the same as the corresponding ti in [56], and the extra two
coordinates s7 and s8 which only appear in the relative case. Notice that, for each matrix S, we
obtain a different basis α and for each basis α, we obtain a matrix by inverting S and solving
ω= S−1α.

5.3.2 Proof of Theorem 5.3
To prove Theorem 5.3, we need first to compute the Gauss-Manin connection in the basis α.

Fix z = t4
t5
0
= s10

4
s10

0
and consider the non-homogenous Picard-Fuchs differential equation (5.5). Let

η1 = t0ω1 and η0 = ω0. These forms are the ones we get by pulling back ω0 and ω1 via the
isomorphism X1, s4

s0

∼= Xs0,s4 (see Proposition 5.4). Define ηi = ∇ ∂
∂z

(ηi−1). By the definition of z,

we get a relation between ∂
∂z and ∂

∂t0
given by

∂

∂z
= −1

5
t6
0

t4

∂

∂t0
. (5.11)
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It is easy therefore to get a relationship between the basis η and ω. We call this matrix C.
As we observed, the Picard-Fuchs equation (5.5) is satisfied by the integral of η1 over the
homology class connecting the curves C+ and C−. Using that

∫
η0 = ∫

ω0 = 1, the fact that
η1 satisfy (5.5) implies the following equality after using the relationship between the Gauss-
Manin connection and integrals (see Chapter2, Proposition 2.12):∫

δ0

∇ ∂
∂z
η4 = −p

z4(z−1)

∫
δ0

η0 + −24
625z3(z−1)

∫
δ0

η1+

+ −24z+5
5z3(z−1)

∫
δ0

η2 + −72z+35
5z2(z−1)

∫
δ0

η3 + −8z+6
z(z−1)

∫
δ0

η4. (5.12)

By comparing the integrands, we can see that the Gauss-Manin matrix in the basis η is given
by:

B1 =


0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
a0 a1 a2 a3 a4

dz, (5.13)

where ai are the coefficients of ∂i

∂zi in 5.5. To end, we compute

B2 := (dC+C ·B1)C−1, (5.14)

which is the Gauss-Manin connection written in basis ω. Observe that the submatrix formed
by lines and columns from 2 to 5 is the Gauss-Manin connection in H3

dR(X ) as computed in [56]
Section 2.6. To compute the matrix in the basis α from Theorem 5.2, we compute:

A= (dS+S ·B2)S−1, (5.15)

where S is given in (5.6).

Proof of Theorem 5.3. We take an unknown vector field R and let its first six coordinates be
equal to the ones in [56, Theorem 3]. As the 4×4 submatrix of the Gauss-Manin Connection is
the same as in the absolute case, by direct computation, we end up with

0 0 0 0 0
0 0 1 0 0

58(s10
0 −s10

4 )2

s3
5

s7 0 0
58(s10

4 −t10
0 )2

s3
5

0

ds7(R)+s8 0 0 0 −1

ds8(R)+ 512(s10
0 −s10

4 )
s5

p 0 0 0 0

 (5.16)

after plugging R in the matrix A from (5.15). Now, recalling that dsi(R) is the i-th coordinate of
the vector field R and that the first column has to have only zeros except for the third line, we
can determine the other coordinates of R uniquely. This gives us the desired vector field and
ends the proof.

5.4 Relationship with Periods
In this section, our goal is to explain why the functions Y and F appear. For this, we need
to look at the period domain of the space Top from Theorem 5.2. For us, a period is simply
a number obtained by the integration of differential forms over cycles in homology. Here, we
are especially interested in the integration of 3-forms over 3-dimensional cycles. Consider
a symplectic basis of the homology group H3(X ) given by {δ1,δ2,δ3,δ4}. Also, let δ0 be the
homology class connecting the two rational curves C+ and C−. Of course, these five homology
classes form a basis for H3(X ,Y ).
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Definition 5.6. The period matrix is defined as

P= [pi j]=
[∫

δi

α j

]
i j

, (5.17)

where the α j form a basis satisfying the conditions given in Definition 5.1.

Using Poincaré duality, one can easily see that this matrix is related to the intersection
matrix of the αi ’s by the formula[〈

αi,α j
〉]= [∫

δi

α j

]T
Ψ−T

[∫
δi

α j

]
, (5.18)

where Ψ is the intersection matrix of the basis δ, which is given by

Ψ :=


0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 −1 0 0 0
0 0 −1 0 0

 .

Definition 5.7. Let G be the group given by:

G :=


g =


1 0 0 h1 h2
0 g11 g12 g13 g14
0 0 g22 g23 g24
0 0 0 g33 g34
0 0 0 0 g44

 , hk, g i j ∈C
g11 g44 = 1,
g22 g33 = 1,

g12 g44 + g22 g34 = 0,
g13 g44 + g23 g34 − g24 g33 = 0.


(5.19)

The group G acts in an element (X ,α) in the moduli space by the right as (X ,α)• g = (X ,αg)
where α is seen as a line vector. Considering the relations, we can write this group in terms of
six "g"-coordinates and two "h"-coordinates, as below:

(g1, g2, g3, g4, g5, g6,h1,h2)=


1 0 0 h1 h2
0 g−2

1 −g3 g−1
1 (−g3 g6 + g4) g−2

1 (−g3 g4 + g5) g−2
1

0 0 g−1
2 g6 g−1

2 g4 g−1
2

0 0 0 g2 g2 g3
0 0 0 0 g2

1

 .

(5.20)
Notice that our coordinate g1 is different from [56]: ours is the square root of the one in that
article.

Proposition 5.8. The action of G written on the coordinates si of Top is

g • s0 = s0 g1

g • s1 = s1 g2
1 + cg1 g2 g3 +ag1 g−1

2 g4 − g3 g4 + g5

g • s2 = s2 g3
1 + s6 g2

1 g2 g3 +bg2
1 g−1

2 g4

g • s3 = s3 g4
1 + s5 g3

1 g2 g3

g • s4 = s4 g1

g • s5 = s5 g3
1 g2

g • s6 = s6 g2
1 g2 +bg2

1 g−1
2 g6

g • s7 = s7 g2 +h1

g • s8 = s7 g2 g3 + s8 g1 +h2

where a,b, c are the expressions given in terms of the coordinates si in (5.6).
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Proof. We start with a pair (Xs0,s4 ,ω1). The form ω1, together with its derivatives and a form
ω0 yields a basis of H3(X ,Y ). Multiplying by the matrix S from equation (5.6) we get a basis
satisfying the conditions in Definition 5.1 depending on the coordinates si. Now, let g ∈G act.
By definition, α1 = ω1 would be multiplied by g−2

1 . To write the new element of the moduli
space in coordinates, we need to normalize ω1. Consider the form g2

1ω1 in the beginning. After
this change, we need to multiply the basis ω by the matrix

K =


1 0 0 0 0
0 k 0 0 0
0 0 k2 0 0
0 0 0 k3 0
0 0 0 0 k4


where k = g2

1. This is because the other forms of the basis ω are derivatives of ω1.
Notice that, by doing this, we are considering the point (ks1,ks4) of the moduli space of

mirror quintics enhanced with a holomorphic 3-form and two rational curves. Now, the matrix
gTSK takes the basis ω0,ω1, . . . ,ω4 to its image by the action of g. The entries of this matrix
are the coordinates of the image. For example, the entry (5,2) should be the coordinate t1, etc.
After completing this computation, we get the result.

5.4.1 The τ-matrix

We want to consider the orbits of the action of G on Top and their images by the period map.
For this, we notice that G acts on the space of matrices by right-multiplication. This action
preserves the relations (5.18) and is compatible with the action on Top, in the sense that the
period matrix relative to a basis α• g is simply Ag, where A is the matrix with respect to α.

Proposition 5.9. For any period matrix P satisfying the relations (5.18), there exists a unique
g ∈G such that Pg can be written in the form

τ=


1 τ4 τ5 0 0
0 τ0 1 0 0
0 1 0 0 0
0 τ1 τ3 1 0
0 τ2 −τ0τ3 +τ1 −τ0 1

 , (5.21)

for some τi.

Proof. Write g in the form (5.20). Multiplying g by a general matrix P and using the relations
(5.18), we get a matrix of the form

Pg =


1 ∗ ∗ ∗ ∗
0 ∗ 1 0 ∗
0 1 0 0 0
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

 .

Using the computations done in [56, Section 3.3], writing down the equations for Pg = τ when
the entries in τ are independent of τi, we get that the first coordinates of g′ := g−1 are neces-
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sarily given by
(g′

1)2 =P−1
21 ,

g′
2 =

−P21

P11P22 −P12P21
,

g′
3 =

−P22

P21
,

g′
4 =

−P12P23 +P13P22

P11P22 −P12P21
,

g′
5 =

P11P22P24 −P12P21P24 +P12P22P23 −P13P
2
22

P11P21P22 −P12P2
21

,

g′
6 =

P11P23 −P13P21

P11P22 −P12P21

It suffices to compute h′
1 and h′

2. After computing Pg = Pg′−1, we get:

τ=


1 P01

P21

P01P22−P02P21
P11P22−P12P21

P Q
0 P11

P21
1 0 0

0 1 0 0 0
0 P31

P21

−P21P32+P22P31
P11P22−P12P21

1 0
0 P41

P21

−P21P42+P22P41
P11P22−P12P21

−P11
P21

1

 (5.22)

where P and Q depend linearly on h′
1, h′

2. Making P = Q = 0, we find expressions for h1 and
h2. This shows existence and uniqueness.

Define Lop as the locus in the moduli space Top from Theorem 5.2 for which the period
matrix is of the form (5.21). Our goal is to express the functions si restricted to this locus in
some coordinate. To do this, we first consider the points of Top of the form (1,0,0,0, y,1,0,0,0),
where y10 = z (the same coordinate used in Section 5.3.2). Then, we compute the period matrix
P for these points and find the elements g ∈ G for which P is of the form (5.21). Then, by
computing the elements (1,0,0,0, y,1,0,0,0)• g, we will get expressions for the coordinates of
Lop. We consider the periods

xi j =
∫
δ j

η̃i,

where η̃0 =ω0 =α0, η̃1 is the holomorphic three form associated to the point (1, s4
s0

) of the moduli
space of triples (X ,ω,C±) defined in Section 5.2 and η̃i = θ( ˜ηi−1) (recall θ = z ∂

∂z ). These periods
are related to the solutions of the Picard-Fuchs equation via the matrix

x01
x11
x21
x31
x41

=


1

2π2 0 0 54

2·(2πi)2
54

4·(2πi)3

0 0 0 1 0
0 0 0 0 1
0 0 5 5

2 −25
12

0 −5 0 −25
12 200 ζ(3)

(2πi)3




ϕ

1
54ψ3

2πi
54 ψ2

(2πi)2
54 ψ1

(2πi)3
54 ψ0

 , (5.23)

where ψi are solutions for the homogenous equation as it is presented in [56, Introduction] and
ϕ is the solution for inhomogeneous equation (5.5) given by the series:

2
∞∑

modd

(5m)!!
(m!!)5 (5−5z)m/2

where the double exclamation point means we multiply all the odd numbers less or equal to
the number (e.g. 7!!= 1·3·5·7= 105). The expression for x01 is taken from [54] and [62]. Notice
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that the notation for the series above in [54] is different: they take τ= ϕ

30 . The expressions for
the other periods are taken from [56, Introduction]. To find the period matrix in terms of xi j,
we need to change from η̃ to the basis α from the moduli space. We consider, therefore, the
matrices

S =


1 0 0 0 0
0 1 0 0 0
0 −55 −54(z−1) 0 0
0 − 5

z−1 0 1 0
0 0 0 0 54(z−1)


and

T =


1 0 0 0 0
0 1 0 0 0
0 −1 −5 0 0
0 2 15 25 0
0 −6 −55 −150 −125

 ,

where T takes the basis η to the basis ω and S takes ω to α. Notice that the matrices above
have already been used in Section 5.3 but for general si. Therefore, the period matrix is simply
P = [xi j](ST)T . Now, using Proposition 5.9 and Proposition 5.8, it is easy to find g ∈ G for
which Pg is of the form (5.21) and compute the action of g on (1,0,0,0, y,1,0,0,0) to get the si
restricted to Lop. The first 7 were already computed in [56, Theorem 1] and the other two are
given below:

s7 = 57(z−1)
x01x12x23 − x01x13x22 − x02x11x23 + x02x13x21 + x03x11x22 − x03x12x21

x21
, (5.24)

s8 = 57(z−1)(x01x24 − x02x23 + x03x22 − x04x21)+
+56z

(
x01x22 + 5

2
x01x23 − x02x21 − 5

2
x03x21

)
. (5.25)

Proposition 5.10. The Gauss-Manin connection restricted to the locus L can be computed in
terms of the coordinate τ0. It is given by:

A|L =


0 0 0 0 0
0 0 1 0 0

dτ5
dτ0

0 0 dτ3
dτ0

0
0 0 0 0 −1
0 0 0 0 0

dτ0, (5.26)

where τ is given by (5.22).

Proof. To prove this, use the fact that the Gauss-Manin connection commutes with integrals,
in the following sense:

d
(∫
δ
ω

)
=

∫
δ
∇ω,

where the integration on the right-hand side takes place only on H3
dR(X ,Y ) (recall that ∇ω can

be written as the sum of elements of the form ω′⊗ s, where s a form in Ω1
T). Now, using this,

we get:

dτ=
[∫

δi

∇α j

]
i, j

=
[∑

k

∫
δi

a jkαk

]
i, j

=
[∑

k
a jkτik

]
i, j

=
[∑

k
τikaT

k j

]
i, j

= τ ·AT .
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This implies that the Gauss-Manin connection has to be given by

A|L = dτT ·τ−T =


0 0 0 0 0

−τ5dτ0 +dτ4 0 dτ0 −τ3dτ0 +dτ1 −τ1dτ0 +τ0dτ1 +dτ2
dτ5 0 0 dτ3 −τ3dτ0 +dτ1
0 0 0 0 −dτ0
0 0 0 0 0


By using Griffiths transversality and the fact that α0 is on F1, we conclude that positions

(2,1), (2,4) and (3,5) have to be zero since our basis respects the Hodge filtration. After taking
dτ0 out, we have the result. This yields the relations

τ1 =−dτ2

dτ0
−τ0

dτ1

dτ0
, (5.27)

τ3 = dτ1

dτ0
, (5.28)

τ5 = dτ4

dτ0
. (5.29)

Notice the first two had already been computed in [56].

By the uniqueness statement from Theorem 5.3, we conclude that ∂
∂τ0

is the vector field R

restricted to the locus Lop. If we consider the coordinate q = e2πiτ0 , then R becomes 2πiq ∂
∂q .

Writing the functions F and Y (or dτ5
dτ0

and dτ3
dτ0

, respectively) in the coordinate q gives us virtual
counts of disks with boundary on the real quintic and virtual counts of rational curves on a
quintic threefold. To see this, we just need to look at the expressions of the τi in terms of xi j we
get, for example, that τ4 is given by x01

x21
, i.e., the quotient of a solution for the non-homogenous

Picard-Fuchs equation by the holomorphic solution to the homogenous equation. This shows
that the expressions for F and Y are the expressions in periods that we have for the disk
potential and the Yukawa coupling.

To end, we list some of the possible extensions that can be made to our work. Firstly, it is
natural to consider the case of two moving rational curves or even a family of divisors in the
mirror quintic and see if we get a generalization of Jacobi forms. A nice starting point would
be the paper [33] in which the authors consider families of divisors on the mirror quintic from
a Physical point of view. Secondly, we could consider higher genus Gromov-Witten invariants
and try to carry out a similar program. Finally, there are still some details missing in the
realization of GMCD in general. A very interesting program would be to try to construct a
more rigorous framework to define the moduli spaces and the functions we are working with.
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Part II

Refinements of Donaldson-Thomas
Invariants
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Chapter 6

Donaldson-Thomas Invariants and their
Motivic Refinements

6.1 The Grothendieck Ring of Varieties
Let k be a field of characteristic zero.

Definition 6.1. The Grothendieck ring of varieties, denoted by K0(V ar(k)), is the abelian group
generated by isomorphism classes of all varieties over k modulo relations

[X ]= [Y ]+ [X \Y ],

where Y is closed in X .
The product structure that makes K0(Var(k)) a ring is given by the usual Cartesian product

[X ] · [Y ]= [X ×Y ]. The class of the affine line [A1
k] is denoted by L in K0(Var(k)) and we set

Mk := K0(Var(k))[L−
1
2 ],

which will be called ring of motivic weights.

Remark 6.2. The following facts are true:

• If f : X → S is a Zariski locally trivial fibration with fiber F, then [X ]= [S] · [F].

• If f : X →Y is a bijective morphism, it is true that [X ]= [Y ].

With this notation, the classes of cellular varieties can be computed in terms of L, for ex-
ample,

[Pn]= 1+L+L2 +·· ·+Ln

and a similar expression can be written for the Grassmanians:

[Gr(n,k)]= (Ln −1)(Ln−1 −1) · · · (L−1)
(Ln−k)(Ln−k−1) · · · (L−1) · (Lk −1)(Lk−1 −1) · · · (L−1)

.

Remark 6.3. Notice that, over non-algebraically closed fields, besides the rational points, vari-
eties have also points that correspond to Galois orbits over the algebraic closure. This gives rise
to different classes of points in K0(Var(k)), which are the classes of Spec(L), with L ⊃ k.

Example 6.4. Over R, we have two classes of points: [SpecR] and [SpecC]. Therefore, al-
though P1(R) is a circle, there are non-rational points corresponding to pairs of complex con-
jugate points. Indeed, P1 is not isomorphic to X = {x2 + y2 = 1} ⊂ A2, since there are two
complex conjugate points "at infinity". In terms of the Grothendieck ring of varieties, we get
[X ]= L+1− [SpecC] ∈ K0(Var(R)).
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Over k = C, there is a morphism to Z given by the Euler characteristic with compact sup-
port.

χc : K0(Var(C))→Z,

which can be extended to a morphism

χCc : MC→Z,

if we send L
1
2 to −1 (since L goes to 1). The same can be done for considering the compactly

supported Euler characteristic of the real points. In Chapter 7, we will introduce the A1-Euler
characteristic, which is defined for varieties over any field. Notice that we have to be careful
when extending to MR. As χRc (L) =−1, the extended Euler characteristic takes values in Z[i],
where i =p−1:

χRc : MR→Z[i].

If one does not want to consider compactly supported Euler characteristics, one can actually
only consider projective varieties.

Proposition 6.5 ([12][Theorem 3.1). ] Consider the group generated by projective varieties and
the relations

[X ]− [Y ]= [BlY X ]− [E], (6.1)
[∅]= 0, (6.2)

where Y ⊂ X and BlY X is the blow up of X along Y and E is the exceptional divisor. Then this
group is isomorphic to K0(Var(k)).

6.2 Donaldson-Thomas invariants
We consider Donaldson-Thomas invariants following [50]. These are simply numbers1 ob-
tained by integration against virtual classes of moduli spaces of ideal sheaves in the complex
setting. If M is a smooth Calabi-Yau threefold, any ideal sheaf defines a subscheme N. The
moduli spaces that we are interested in are the ones of the form X = In(M,β) and consist of
sheaves for which N represents the homology class β and χ(ON)= n. Usually, we are interested
in the cases for which N has dimension at most one, which implies that β is in H2(M). In(M,β)
is, then, isomorphic to a Hilbert Scheme of curves in M. In particular, for the case β= 0, we are
considering exactly the situation in which N has dimension 0, that is, In(M,0) is the Hilbert
Scheme of points of M.

The DT invariants of M are defined by integrals:

DT(n,β)=
∫

[In(M,β)]vir
1 (6.3)

where [In(M,β)]vir is a virtual class in the homology defined via obstruction theory. This is
constructed in the same way as virtual classes for Gromov-Witten theory as in Chapter 1. It
was proved, in [10], to depend only on the scheme structure of the moduli space and not on the
chosen obstruction theory. In particular, if the moduli space ends up being smooth, this virtual
class is, up to a factor (−1)dim In(M,β), simply the Poincaré dual of the top Chern class, which
means that the integral above is given, up to sign, by the Euler characteristic with compact
support of the moduli space.

1For emphasis, one sometimes refers to them as "numerical DT-invariants", to distinguish them from their
"motivic" version, defined afterward.
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A natural way of refining such invariants is, therefore, to consider these virtual classes
as elements in the Grothendieck ring of varieties, since the Euler characteristic gives us a
natural morphism from this ring to Z. If the moduli space is smooth these virtual classes
should be given by the classes of In(M,β) in the ring MC, since the DT invariants coincide with
the Euler characteristic. Notice, though, that, if the moduli space is singular, it is usually not
straightforward to define such virtual classes in the Grothendieck ring of varieties. Pictorially,
we want a commutative diagram as below:

{
Moduli Spaces In(M,β)

}

Z

MC

Virtual Classes

DT Theory

χc

(6.4)

The idea of refining DT invariants via the Grothendieck ring of varieties was first consid-
ered in [40]. For us, the interest behind this is that, as already pointed out in the introduction
and in [31], by considering real and complex Euler characteristics, we can, in some cases, re-
cover real DT invariants from the same formulas in the Grothendieck ring. In general, the
virtual classes are not in Mk (or MC), but in a slightly bigger equivariant version of this ring.
In the next section, we present a way to define virtual classes over a general field k of char-
acteristic zero when the moduli spaces are defined over k and can be represented as a critical
locus of a regular function, based mainly in the work of Denef and Loser [21]. In practice, this
is the case in many interesting examples in which Db(X ) ∼= Db(Q−mod), that is, in which we
can represent the moduli spaces as quiver varieties.

6.3 The Motivic Nearby Class

Let X be a smooth variety and f : X →A1 be a regular function. Denote the central fibre f −1(0)
by X0. Our goal is to define a class [Z]vir for Z = {d f = 0}, the critical locus of f , which encodes
also the scheme structure of Z.

Definition 6.6. Let µn be the group of n−roots of unity in k̄. Notice that it has a structure of
algebraic variety over k. We have maps µnd → µn given by x 7→ xd. This gives us a projective
system. We denote the limit by µ̂. A good µn action on X is a group action µn × X → X which is
a morphism of varieties such that each orbit is contained in an affine subvariety of X . A good
µ̂-action is a group action µ̂× X → X which factors through a good action of µn for some n.

Definition 6.7. Consider the abelian group generated by symbols [X , µ̂] = [X ], where X is a
variety with a good µ̂-action, modulo isomorphisms compatible with the action. The relations
are the same scissor relations [X ] = [Y ]+ [X \ Y ] that we have for K0(Var(k)) but such that the
action on Y is induced by the one in X . Finally, there is one more relation given by [X ×V ] =
[X ×An], where V is the affine space of dimension n with a good µ̂-action and, on the other side,
An has the trivial action. The product is given by the usual Cartesian product with the product
action. The class of the affine line with the trivial action is denoted by L. This ring will be
denoted K0(Varµ̂(k)) and its localization K0(Varµ̂(k))[L−

1
2 ] by M

µ̂

k .



68 CHAPTER 6. DT INVARIANTS AND THEIR MOTIVIC REFINEMENTS

Take a resolution of f : X → A1, that is, a map h : Y → X , with Y smooth and irreducible
such that Y0 = h−1(X0) has only normal crossings and the restriction h : Y −Y0 → X − X0 is an
isomorphism. We fix the notation:

• E i, i ∈ J denote the components of Y0 and Ni their multiplicities;

• E I , I ⊂ J denote the intersections
⋂

i∈I E i;

• E◦
I , I ⊂ J denote E I −⋃

j∉I E j ∩E I

To take multiplicities into account, we define natural covering spaces Ẽ◦
I → E◦

I , which are
unramified and Galois with Galois groups given by µmI , where mI is the greatest common
divisor of the multiplicities of all E i, i ∈ I. Take U ⊂ Y an open set such that f ◦ h = uvmI ,
where u is a unit in OY (U) and v is a morphism v : U → k. We can define Ẽ◦

I by gluing the sets

{(x, t) ∈ (U ∩E◦
I)×A1|tmI = u−1(x)}.

The considerations above show that Ẽ◦
I is a Galois covering and that there exists a natural

good action of µn (and thus, of µ̂) on it.

Definition 6.8. The motivic nearby class of f is defined as follows:

S f := ∑
∅̸=I

(1−L)|I|−1[Ẽo
I ] ∈M

µ̂

k (6.5)

Among other remarks, the belief is stated in [21] that this is a motivic incarnation of the
complex of nearby cycles of X0, which was defined in Exposé XIII of [18]. Restricting S f to a
point x ∈ X0, we get the local version, which the authors believe to be a motivic version of the
classical Milnor fibre of f over x.

S f ,x := ∑
∅̸=I

(1−L)|I|−1[F̃o
I ] ∈M

µ̂

k (6.6)

where Fi is the fiber of E i over x.

Example 6.9. Let f :A2 →A1 be given by f (x, y) = x2 − y2. Then X0 has already only normal
crossings, which are the two lines E1 and E2 intersecting at the origin. We have:

E◦
1 = E1 −0

E◦
2 = E2 −0

E◦
1,2 = 0

As all multiplicities are equal to 1, we do not need to worry about the covering spaces. Com-
puting S f , we get:

S f = [E1 −0]+ [E2 −0]+ (1−L)[0]= L−1+L−1+1−L= L−1 (6.7)

For S f ,0, we can write:

S f ,x = [(E1 −0)∩h−1(0)]+ [(E2 −0)∩h−1(0)]+ (1−L)[0∩h−1(0)]= 1−L (6.8)

It is instructive to compare these results with what happens over R and C. The Milnor
fibre over a point x ∈ X0, over C, is defined as the intersection of the preimage f −1(w), for
small w ∈ C, with a small ball around x. This gives us a cylinder around x, which has Euler
characteristic 0: this is what we get by making L = 1 in equation 6.8. Considering the same
definition over R (which cannot be done in all cases, considering that the topology of the Fiber
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f −1(w) can change depending on w), we get two hyperbola segments. After intersecting with
a ball, we get compact segments and the Euler characteristic should be 2. This is compatible
with making L = −1 in equation 6.8. If we do not intersect with the ball (that is, consider,
in some sense, a global fibre), we would get an infinite cylinder (χc = 0) or two non-compact
branches of a hyperbola(χc =−2). This is compatible with equation 6.7.

As we will point out, A1-enumerative geometry has an arithmetic incarnation of the Mil-
nor number for isolated singularities, which is the so-called "EKL class" of the gradient of f .
Although, in order to compute DT invariants, we use the definition above in the case of non-
isolated singularities, an interesting problem would be to understand the relationship between
Milnor numbers and the class S f . We elaborate on this in Section 8.2 of Chapter 8.

6.4 Virtual class of a critical locus
Definition 6.10. Let X be a smooth variety and f : X → A1 be a regular function. If Z is the
critical locus of f and X0 = f −1(0), the virtual class of the critical locus Z is defined as

[Z]vir =−L− dim X
2 (S f − [X0]) ∈M

µ̂

k (6.9)

The idea behind this definition is that, over the smooth points of X0, the Milnor fibre should
correspond to X0 itself. This means that this virtual class encodes exactly what is happening
on the singular locus of X0. Notice that this definition depends on the function f chosen, that
is, it depends on how the variety is presented as a critical locus.

Remark 6.11. Definition 6.10 was given in the paper [11]. The extension by the square root
is related to the existence of a sign that appears when relating DT invariants to the Euler
characteristic (see [10]).

Example 6.12. If f = 0 is the zero function, then Z = X0 = X (every point is critical). We can
compute S f = 0 using the fact that X0 can be seen as the zero divisor. Therefore:

[Z]vir =−L− dim X
2 (0− [X0])= L− dim X

2 [X ]

This example shows that the virtual class of a smooth variety is its class in Mk up to mul-
tiplication by a factor. In terms of DT invariants, this factor corresponds to the sign difference
that we get compared to the Euler characteristics.

The virtual class is not always in Mk but, over C, Behrend, Bryan and Szendröi showed, in
[11], that, when f is equivariant with respect to a torus action on X , [Z]vir ∈ Mk and can be
computed from the difference between the zero fiber and the generic fiber.

Proposition 6.13 (cf. Thm. B.1 in [11]). Let f : X → C be a regular morphism on a smooth
quasi-projective variety. Let Z be the critical locus of f . Assume that there exists an action of a
connected complex torus on X such that f is equivariant with respect to a primitive character.
If there is a one-parameter subgroup C× ⊂ T such that the induced action is circle compact, that
is, the set of fixed points is compact and the limit limλ→0λx exists for all x ∈ X , then, the virtual
class [Z]vir is given by

[Z]vir =−L− dim X
2 ([X1]− [X0]) ∈MC,

where [X1] is the class of the fibre f −1(1).

The result above strongly uses the fact that the varieties are defined over C, but our com-
putations in section 4 show that, at least in the case of degree zero invariants of A3, the real
DT invariants are also encoded in the formula. Inspired by the work of Levine on localization
formulas in A1-enumerative geometry [45], one may think that it could be possible to extend
these arguments to more general fields.
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Chapter 7

A1-Enumerative Geometry

A1-Enumerative geometry consists in applying the machinery of so-called A1-homotopy theory
to classical enumerative problems. This machinery was introduced in the 90s, in the work of
Morel and Voevodsky [53]. The main idea is to consider the affine line A1 rather than the
interval [0,1] ⊂R as a parameter space and thereby construct a homotopy theory for schemes.
This allows us to define an algebraic or A1-degree for maps between schemes, which naturally
generalizes the classical degree from algebraic topology. While the natural ring where this
degree is defined is not Z but rather the Grothendieck-Witt ring of quadratic forms, the theory
has the highly attractive feature of being defined over arbitrary fields, rather than just the
complex or real numbers. In the next sections, we are going to define a refined version of the
degree of a map and a refined version of the Chow groups, which will allow us to consider
intersection theory as in classical enumerative geometry.

7.1 Quadratic Forms and the A1-degree

In this section, our goal is to introduce the Grothendieck-Witt ring of quadratic forms, denoted
by GW(k), which will allow us to make enumerative geometry over any field, as described
above.

Definition 7.1. The Grothendieck-Witt ring is the group completion of the set of all quadratic
forms over k up to isometries with the operations

q+ q′ : V ⊕W → k q+ q′(x, y)= q(x)+ q′(y) (7.1)

qq′ : V ⊗W → k qq′(x⊗ y)= q(x)q′(y) (7.2)

where q : V → k and q′ : W → k are quadratic forms representing isometry classes.

There are two important natural maps from GW(k) to Z which are the rank and the signa-
ture.

• rk : GW(k) → Z computes the dimension of the vector space in which the quadratic form
is defined.

• sgn : GW(k)→Z computes the signature of the quadratic form.

• If we have a field extension k ⊂ L, we can define a map GW(L) → GW(k) by simply
considering composition with the trace map TrL/k : L → k.
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Remark 7.2. Since every quadratic form can be diagonalized, GW(k) is generated by elements
of rank 1. These are represented by forms q(x) = ax2, with a ∈ k×. They are denoted by〈a〉 ∈
GW(k). If a is a square, 〈a〉 = 〈1〉 in GW(k), and therefore the generators of GW(k) are the the
elements in k×/(k×)2. Using this notation, we write H= 〈1〉+〈−1〉. This is called the hyperbolic
form. It has the property that 〈a〉H=H for any a ∈ k.

The Grothendieck-Witt ring is suitable to refine the classical Z-valued enumerative in-
variants (counts) defined over algebraically closed fields. Very roughly, the intuition is that
we count points considering local "orientations" (as it is done over R), which correspond to
quadratic forms. Counting with such orientations allows us to get invariant counts over any
field k. The ranks of these quadratic forms correspond to the size of the Galois orbit of the
point and, therefore, they recover the counts over k̄. The signature recovers the signed counts
over R (when k ⊂R) since the two square classes over R will correspond to the two possible local
orientations (signs). A good example is the definition of the A1-degree of a map from An →An.

Definition 7.3. Let P :An →An be a morphism and let x be a closed point with rational image
y = P(x). Assume P is étale at x and that x is isolated in its fiber. Then the local degree of P at
x is given by:

degA
1

x (P)=Trk(x)/k〈detJ(x)〉 (7.3)

where J(x) denotes the derivative (Jacobian) of P at the point x and k(x) denotes the residue
field of x. The degree of P is simply the sum over all the preimages, which does not depend on y
[35].

degA
1
(P)= ∑

x∈P−1(y)
Trk(x)/k〈detJ(x)〉 (7.4)

Remark 7.4. When P is not étale, the degree can still be defined using more involved machinery
from homotopy theory. We refer the reader to [35, Section 2] for a more complete exposition and
to [53] for technical details.

Equation (7.3) corresponds to our local "orientation" and, in (7.4), we "count" all the points.
The simplest example is the function P(x)= x2 from A1 to A1.

Example 7.5. Let k =Q and P(x) = x2 in A1. The derivative is given by J(x) = 2x. Therefore,
using equation (7.4) we can write, choosing y= 1 and y=−1, the following formulas.

degA
1
(P)=TrQ(1)/Q〈2〉+TrQ(−1)/Q〈−2〉 = 〈2〉+〈−2〉 =H

degA
1
(P)=TrQ(

p−1)/Q〈2
p
−1〉 =TrQ(

p−1)/Q〈1〉 =H
In the second formula we used that 2

p−1 = (1+p−1)2, and therefore its class in GW(Q(
p−1))

is 〈1〉. This corresponds to the simple quadratic form x 7→ x2, which, after composition with the
trace, corresponds to a+b

p−1 7→ 2a2 −2b2 which is H.
Notice that rk(H) = 2, which is the number of preimages in the algebraic closure, and that

sgn(H)= 0, which is the real topological degree.

7.2 K sheaves and Chow groups

7.2.1 Milnor K -sheaves and classical Chow groups
Classical enumerative geometry lies on computing intersection products in the Chow groups.
Our first goal in this section is to give a sheaf theoretic definition of the Chow cohomology
groups. After this, we will be able to generalize this idea to give a definition of "refined" Chow
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cohomology groups, where we are going to be able to solve enumerative problems in terms of
quadratic forms, as we will see in the next section. The results we present in this subsection,
before going to the refined version, are from the paper [51].

Definition 7.6. Let R be a ring. We define the algebra K∗R to be the quotient of the tensor
algebra (over Z) of the multiplicative group R× by the ideal generated by elements of the form
[u]⊗ [1−u], for u,1−u ∈ R×. These relations are known as Steinberg relations.

In order to avoid confusion between the operations in K∗R and in R, we introduce the nota-
tion [u] ∈ K∗ for u ∈ R×. Then, we can write [uv] = [u]+ [v]. Besides that, we will also drop the
tensor product symbol when denoting multiplication.

Theorem 7.7. Let F be a field. The algebra K∗F satisfies the following properties

1. [u][−u]= 0,

2. αβ= (−1)mnβα, where α ∈ KnF and β ∈ KmF,.

3. [u]2 = [u][−1].

Proof. For the first part, we use that −u(1−u−1)= 1−u. This implies:

[−u]+ [1−u−1]= [1−u]. (7.5)

After multiplying both sides by [u]=−[u−1], we get, by definition:

[u][−u]= 0. (7.6)

For the second part, it suffices to show the fact for n = m = 1, since degree 1 elements
generate the algebra. Using the first part, we can write, for u,v ∈ F×:

[u][v]+ [v][u]= [u][v]+ [u][−u]+ [v][−v]+ [v][u]= [u]([v]+ [−u])+ [v]([−v]+ [u])=
= [u][−vu]+ [v][−vu]= [uv][−vu]= 0. (7.7)

The third assertion is also a consequence of the first one:

[u][u]= [u]([−1]+ [−u])= [u][−1]. (7.8)

Consider a discrete valuation v on the field F. Let its residue class field be denoted by k.
Define R to be the associated DVR given by v ≥ 0. Let U be the group of units of R, that is,
elements for which v = 0. Let φ be the natural quotient map φ : U → k×.

Lemma 7.8. There exists a unique morphism ∂ from KnF to Kn−1k for which

∂([t][u2] . . . [un])= [φ(u2)] . . . [φ(un)],

where t is a generator of the maximal ideal of R and ui ’s are units in U .

Proof. For n = 1, we simply define ∂ to be the valuation map from K1F ∼= F× to Z= K0k. Indeed,
it takes [t] to 1, for t any generator of the maximal ideal. It is a morphism since the valuation
sends products to sums. Of course, any other morphism sending all generators of the maximal
ideal to 1 has to send units to zero. As any element of F× can be written as utr for u a unit,
the map is uniquely determined in all elements of F×.

To finish, we just need to show that any element in KnF can be written in terms of elements
of the form [t][u2] . . . [un]. Indeed, if we have an element of the form α = [u1tr1] . . . [untrn], we
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can write α = ([u1]+ r1[t])...([un]+ rn[t]). Using part 3 of Theorem 7.7, we have that [t]ℓ =
[t][−1]ℓ−1 and we conclude that α is a sum of elements of the form [t][v2] . . . [vn] and an element
[u1] . . . [un]. Now, in order not to depend on the choice of t, products of units have to be mapped
to zero, since, for α a product of units, we have [t]α= [ut]α= [u]α+ [t]α, which implies [u]α=
0. Now, we can simply choose a generator t, define the map for [t][u2] . . . [un] and extend by
linearity, sending [u1] . . . [un] to zero. Note that this is well-defined since if two elements have
sum 1, they will still have sum 1 in the quotient. This proves uniqueness and existence.

Remark 7.9. The maps defined in Lemma 7.8 are surjective. This is a direct consequence of the
fact that the quotient map R → k is surjective.

Definition 7.10. Let X be a smooth scheme over a field k. The nth Milnor K sheaf, denoted by
K M

n has its stalks given by, at each point x ∈ X , the ring Kn(OX ,x). K M
1 = O×

X and K M
0 is the

constant sheaf Z. Formally, we can define K m
n to simply be the n-th part of the tensor algebra

sheaf of O×
X and take the quotient by the Steinberg relations as in Definition 7.6.

The next result shows how K-sheaves can be used to define the Chow groups in a cohomo-
logical way. This will be important for us in the definition of refined Chow groups. The idea will
be to replace the Milnor K sheaves by Milnor Witt K sheaves and get a new version of Chow
groups.Although this result is proved in [1], we present a proof of this theorem for completion,
since the ideas present in it are important for understanding the analogous construction that
is done in the A1 case.

Theorem 7.11 (Bloch-Kato). Let X be a smooth variety over k. Then, the Chow groups can be
computed as sheaf-cohomology groups with coefficients on K M

n .

Hn(X ,K M
n )∼= CHn(X ). (7.9)

Remark 7.12. For n = 1, notice that Theorem 7.11 above is simply the classical identity:

H1(X ,O×
X )∼=Pic(X )∼= CH1(X ).

Proof of Theorem 7.11. The idea is to consider a resolution of K M
n by skyscraper sheaves of the

following form:

0→K M
n → ⊕

x∈X (0)
Kn(k(x))→ ⊕

x∈X (1)
Kn−1(k(x))→···→ ⊕

x∈X (0)
K0(k(x))→ 0, (7.10)

where X (i) is the set of points of codimension i and the first map is the inclusion of algebras
induced by the inclusion of local sections in the field of rational functions and the other maps
are induced by the map ∂ from Lemma 7.8 (recall that if x is a codimension r point and y is a
codimension r+1 point inside {x}, the local ring of y can be seen inside k(x), since any function
that vanishes on x will also vanish on y: in other words, at an affine chart, we can identify x
and y with two prime ideals of a ring A such that Ix ⊂ I y and therefore localizing outside I y
also localizes outside Ix).

First, we show that ∂2 = 0. Take the r-th term of the sequence.

· · ·→ ⊕
x∈X (r−1)

Kℓ(k(x))→ ⊕
x∈X (r)

Kℓ−1(k(x))→ ⊕
x∈X (r+1)

Kℓ−2(k(x))→ . . . (7.11)

Choose any element α= [u1] . . . [uℓ] ∈ Kℓ(k(x)) for some x of codimension r−1. For each point
y of codimension r that is contained in the closure of x, choose a generator ty of the local ring
of y inside k(x). The image of α in the component of the sum

⊕
x∈X (r) Kℓ−1(k(x)) corresponding

to y is simply 0, if no ui lies on the ideal generated by ty on the corresponding local ring, and
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it is ±[−1]i−1[uz1] . . . [uzℓ−i ] if there are i elements on the ideal generated by ty, where the sign
depends on the position of each element on the original sum: for example, if there are only on
element on the ideal, the sign would be its index minus 1. To finally show that ∂2 = 0, let z be a
point of codimension r+1. Take all points of codimension r for which z belongs to the closure.
Applying ∂, we will get a sum of elements of the form above, again considering for each y, a
generator tzy of the maximal ideal of the local ring corresponding to z inside k(y). Notice that,
the image consists of the same element in Kℓ−2(k(z)) since we are simply considering the prime
ideal generated by ty and tyz in k(x) and applying ∂. The difference is in the signs. Since we
are considering all possible y, in the end, the signs cancel off and we get ∂2 = 0.

Now, it’s pretty straightforward to see that the sequence is indeed exact on the stalks. For
this, take any point x. The stalks are direct sums over the points y such that x ∈ y. Looking
again at equation 7.11, if an element in Kℓ−1(k(y)), for some y, goes to zero by ∂, it means that
this element is a product of units for all z of codimension 1 on y. This implies that the elements
are actual units of Ox,y. This means that it is the image of an element from Kℓ(k(x)) by just
adding a generator at the beginning.

As skyscraper sheaves are all flasque, we can compute cohomology by taking global sec-
tions. To compute the n-th cohomology group, we can look at the last terms:

. . . → ⊕
x∈X (n−1) K1(k(x)) → ⊕

x∈X (n) K0(k(x)) → 0
↓ ≀ ↓ ≀

. . . → ⊕
x∈X (n−1) k(x)× → ⊕

x∈X (n)Z → 0

If we recall that the boundary map, in this case, is simply the divisor map, associating a
rational function on {x} to the corresponding principal divisor (since this is done exactly by
computing valuations corresponding to each local ring), we conclude that the n-th cohomology
is generated by the subvarieties of codimension n subjected to the relation that is exactly
rational equivalence. This shows that CHn(X )∼= Hn(X ,K M

n ).

7.2.2 Milnor-Witt K -sheaves and the Refined Chow-Witt groups
Our goal now is to introduce a new K sheaf, which will have similar properties to K M , but
its cohomology will compute not the usual Chow group, but a “refined" Chow group, in which
the coefficients are not integers, but quadratic forms, i.e., elements of the ring GW(k). This
will allow us to consider an intersection theory that takes the field into account. We follow the
references [43] and [52, Chapter 2].

Definition 7.13. For a ring R, the Milnor-Witt algebra K MW∗ (R) is the algebra generated by
elements [u], for u ∈ R×, in degree 1, and a new symbol η in degree -1. This generator satisfies
the relations:

1. [u]η= η[u], for any u ∈ R×,

2. [u][1−u]= 0, for any u, 1−u in R×,

3. [uv]= [u]+ [v]+η[u][v], for any u,v ∈ R×,

4. ηh = 0, where h = 2+η[−1].

Remark 7.14. Relation (2) given in the definition above guarantees that the quotient K MW∗ (R)/(η)
is simply K M∗ (R).

Lemma 7.15. We have that [1]= 0 and, as in Theorem 7.7, that
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1. [u][−u]= 0

2. [u]2 = u[−1] and

3. [un]= nϵ[u], where

nϵ =
n−1∑
i=0

1+η[(−1)i]=
{ n

2 h, if n is even
1+ n−1

2 h, if n is odd

Proof. To show that [1] = 0, consider the two equations obtained by applying relation 3 in
Definition 7.13.

[1]= [−1]+ [−1]+η[−1]2 = [−1]h

[1]= [1]+ [1]+η[1]2 =⇒ 0= [1]+η[1]2

By combining the two equations and applying relations 1 and 4 of the same definition:

0= [1]+η[−1]h[−1]= [1]+ [−1]ηh[−1]= [1].

The rest of the proof is analogous to Theorem 7.7. We use again that (1−u−1)(−u)= 1−u. This
implies that:

[1−u]= [1−u−1]+ [−u]+η[1−u−1][−u] (7.12)

Noticing that

0= [1]= [u]+ [u−1]+η[u][u−1] =⇒ [u]= (−1−η[u])[u−1]=α[u−1]

and multiplying (7.12) by [u] and using relations 1 and 3 in the definition 7.13 again, we have:

0= [u][1−u]=α[u−1][1−u−1]+ [u][−u]+αη[u−1][1−u−1][−u]= [u][−u]

The second assertion is again an easy consequence:

[u]2 = [u]([−u]+ [−1]+η[−u][−1])= [u][−u]+ [u][−1]+η[u][−u][−1]= [u][−1]

Finally, for the last one, we just use induction and the formula 3 of the definition 7.13

[un]= [un−1]+ [u]+η[un−1][u]= (n−1)ϵ[u]+ [u]+η(n−1)ϵ[u]2 =
= [u]

(
(n−1)ϵ+1+ (n−1)ϵη[−1]

)
.

Now, if n−1 is even, i.e., n is odd, we get:

[u]n = [u]
(

n−1
2

h+1+0
)
= nϵ[u],

and, if n−1 is odd, i.e, n is even:

[u]n = [u]
(
1+ n−2

2
h+1+η[−1]

)
= [u]

(
n−2

2
h+h

)
= [u]

n
2

h = nϵ[u].

Proposition 7.16. If F is a field, we have K MW
0 (F)∼=GW(F).

Proof. Define a map φ : GW(F)→ K MW
0 (F) on the generators by the equation

φ(〈u〉)= 1+η[u],

and extend it by linearity.
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1. φ is well defined. If u = a2, we have:

1+η[a2]= 1+η(2[a]+η[a]2)= 1+η(2[a]+η[a][−1])= 1+ [a]ηh = 1.

2. φ is a morphism, that is, it respects the multiplication:

φ(〈uv〉)= 1+η[uv]= 1+η([u]+ [v]+η[u][v])= (1+η[u])(1+η[v]).

3. φ is an isomorphism since it has an inverse given by sending η[u] to 〈u〉−〈1〉.

Remark 7.17. The image of the elements nϵ by φ will be denoted by the same nϵ in GW(k).

nϵ =
n−1∑
i=0

〈(−1)i〉

Lemma 7.18. Let R be a DVR. Let F be its field of fractions and let k be its field of residues
and φ be the quotient map R → k. Then, for each generator t of the maximal ideal of R, there
exists a morphism ∂t from K MW

n F to K MW
n−1 k that commutes with η and satisfies:

1. ∂t([u1] . . . [un])= 0 if the ui are all units on R;

2. ∂t([t][u2] . . . [un])= [φ(u2)] . . . [φ(un)]

Proof. We use the same idea as in Lemma 7.8. First, we define the map from K MW
1 (F) →

K MW
0 (k)∼=GW(k). For α= utr ∈ F×, we define:

∂t([utr])= rϵ
〈
φ(u)

〉 ∈GW(k).

Notice that if we write

[utr]= [u]+ [tr]+η[u][tr]= [u]+ rϵ[t]+η[u]rϵ[t],

we see that the definition above agrees with properties one and two.

∂t[u]+∂t(rϵ[t])+η∂t(rϵ[t][u])= rϵ
〈
φ(u)

〉
For r odd, for example, this implies:

∂t[u]+∂t

(
[t]+ r−1

2
h[t]

)
+η∂t

(
[t][u]+ r−1

2
h[t][u]

)
= 1+η[φ(u)]+ r−1

2
h

∂t[u]+∂t([t])+ r−1
2

∂t
(
2[t]+η[t], [−1]

)+η∂t ([t][u])= 1+η[φ(u)]+ r−1
2

h,

from which, we conclude that ∂t([u])= 0, ∂t([t][u])= [φ(u)] and that ∂t(rϵ[t])= rϵ.
To show existence, we can show that any element can be written (up to η) as a sum of

elements of the form [t][u1] . . . [un] or [u1] . . . [un]. Indeed, this is done by writing a general
element

α= [u1tr1] . . . [untrn],

and using that
[utr]= [u]+ [tr]+η[u][tr]= [u]+ rϵ[t]+η[u]rϵ[t].

.
Finally, as the representation of an element is unique once t is fixed, the map is well defined

by writing α as above.
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Remark 7.19. Notice that the map above depends on the choice of t, differently from the one in
7.8. Also, another proof for the lemma above can be found in [52].

We can now move back to geometry. Let X be a smooth variety over k. Following the same
idea of Definition 7.10, we can define Milnor-Witt sheaves, denoted by K MW

n . Although the
maps depend on the choice of a local parameter at each point, the cohomology (i.e., kernels and
images) will not depend on this choice (again, for details, we refer to [52]). In this case, though,
we are also interested in twisting our sheaves by line bundles L. To do this, notice that K MW

n
can be regarded as a Z[O×

X ] module, by considering the inclusion of O×
X ,x on the stalks K MW

0 .
On the other hand, any line bundle L has an associated sheaf L×: the sheaf of non-vanishing
sections, which is also an Z[O×

X ]-module.

Definition 7.20. Let X be smooth and let L be a line bundle. We define the twisted Milnor-Witt
sheaf, denoted by K MW (L), to be:

K MW ⊗Z[O×
X ] L

The line bundles can be considered up to squares, that is, if L ∼= M⊗2, the twisting is trivial
(since the squares of O×

X act trivially).

By analogy with the Theorem 7.11, we can define (twisted) Chow-Witt groups by taking the
cohomology of the Milnor-Witt K sheaves.

Definition 7.21. Let X be smooth over k and let L be a line bundle. The Chow-Witt groups
twisted by L are defined as

C̃H
n
(X ,L)= Hn(X ,K MW

n (L))

Remark 7.22. By using the same argument as in the proof of Theorem 7.11, we can regard�CHn(X ,L) as cycles with coefficients of quadratic forms over L.

We have pullbacks and pushforwards for Chow-Witt groups, but we have to be careful about
the line bundles. This new technical complication is a result of considering "orientations".

Proposition 7.23. For f : X →Y of relative dimension d, we can define:

• A pullback f ∗ : C̃H
n
(Y ,L)→ C̃H

n
(X , f ∗L)

• A pushforward for f proper f∗ : C̃H
n
(X ,ωX ⊗ f ∗ωY ⊗ f ∗L)→ C̃H

n−d
(Y ,L)

Proof. The proof follows from the constructions for classical Chow groups as the Chow Witt
group can be seen as generated by algebraic cycles. See Remark 7.22.

Remark 7.24. The result above gives us a map
∫

X : C̃H
n
(X ,ωX ) → GW(k), given by push-

forwarding any class to the point ∗= Spec(k). It also defines the Euler class of a vector bundle,
ε(V ) ∈ C̃H

r
(X ,det−1(V )), via pushfowarding the class 1X by a section and then pulling it back.

Notice that we can only compute the integral of an Euler class (that is, count the zeros of a
generic section), if the determinant of the bundle is, up to squares, given by ωX . This gives
a notion of (relatively) orientable vector bundles. For the tangent bundle TX , we have that
det−1(TX )= det−1((Ω1

X )−1)=ωX . This implies that we can compute
∫

X ε(TX ), for any X .

Definition 7.25. The Euler characteristic of a smooth and projective variety X can be defined
as

χA
1
(X ) :=

∫
X
ε(TX )

If X is not projective, one can still define the Euler characteristic. We can consider the
motivic stable homotopic category and use the fact that the infinite suspension spectrum of X
is strongly dualizable and gives rise to an endomorphism of the sphere spectrum, which corre-
sponds to an element of GW(k). The relationship between these two definitions is explained in
[42] and was first proved in [47]. The same idea can extend this map to a compactly supported
Euler characteristic.



Chapter 8

Aritmetic Refinements of
Donaldson-Thomas invariants

8.1 Arithmetic Donaldson-Thomas Invariants
After introducing A1 enumerative geometry and defining an A1 version of the Euler charac-
teristic, we can consider the map defined on K0(Var(k)) that takes any variety and evaluates
its compactly supported Euler characteristic. Even though we have not defined this for non-
projective varieties, we only need to consider projective varieties (see (6.1)). This was already
pointed out in [6] and they stated the following:

Proposition 8.1 (cf. [6] Thm. 1.13). Let k be a field with char(k) = 0. Then the compactly
supported A1-Euler characteristic is well defined and the following map:

χA
1

c : K0(Var(k))→GW(k)

is a homomorphism of rings.

The proof of the above proposition simply follows from the usual properties of Euler char-
acteristics, which are compatible with the relations in K0(Var(k)). The morphism from Propo-
sition 8.1 can be extended to the localization of K0(Var(k)) in the same way as the topological
Euler characteristics (see Section 6.1) after adjoining a square root of 〈−1〉 to GW(k).

χA
1

c : Mk →GW(k)(α) (8.1)

where α is such that α2 = χA1

c (L)= 〈−1〉
The morphism above allows us to get a "numerical" version of DT invariants over any field,

given that the motivic version defined in Definition 6.10 is in Mk (seen as a subring of M
µ̂

k ). We
call these invariants arithmetic DT invariants. One can also consider an equivariant version
of the A1-Euler characteristic in order to define arithmetic invariants even when the virtual
classes are not in Mk.

An interesting question is whether there is a direct definition of such invariants that is not
related to the Grothendieck ring of varieties but defined directly using the tools ofA1-homotopy
theory.

8.2 Local A1-degree and EKL Classes
We now discuss some aspects of the Eisenbud-Khimshiashvili-Levine (EKL) classes, which, as
we stated in the introduction and section 6.3, are an important ingredient for possible physical

79
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interpretations and might be key to finding a relationship between the motivic nearby cycles
and the A1-version of the Milnor number.

In the papers [22] and [38], the idea was to find a way of computing the local topological
degree of P : Rn → Rn from algebraic information in the local ring of P at 0. They showed
that there is a quadratic form (the EKL form) defined on the local algebra whose signature
corresponds to the local degree. The same problem was considered for holomorphic maps, and
the rank of the EKL form ended up being equal to the local degree.

The rank and signature appearing above are already a hint that, over an arbitrary field
k, the class of the EKL form (EKL class) in GW(k) should be equal to the refinement of the
local topological degree introduced in Definition 7.3. Using such refinement, J. Kass and K.
Wickelgren showed that the class of the EKL form in GW(k) correspond to the local A1-degree
[35]. We now define the EKL form.

Definition 8.2. Consider a morphism P : An → An with P(0) = 0. Assume that this zero is
isolated. We can write P as (P1, . . . ,Pn), with Pi =∑n

j=1 ai jx j. Let A = k[x1, . . . , xn](x1,...,xm)/(P) be
the local algebra of P at 0. Define E = det(ai j).

Let φ : A → k be any k-linear map and define the bilinear form βφ(p, q) = φ(pq). The
Eisenbud-Khimshiashvili-Levine (EKL) class of P is the class of βφ ∈ GW(k) for any φ with
φ(E)= 1. It is denoted by w0(P).

Remark 8.3. E basically carries the same information as the Jacobian determinant detJ of P.
Specifically, detJ = dimk A ·E. In particular, in characteristic zero, one can consider J instead
of E.

Remark 8.4. If P has a simple zero at the origin, then w0( f ) is simply the class 〈E〉 = 〈detJ〉.
This follows from the fact that in this case A ∼= k. In particular, it corresponds to the local degree
in this case, since P having a simple zero implies P is étale.

EKL classes are related to critical loci and Milnor fibres for isolated singularities. For
f :An → k, the derivative of f gives us a map P := d f :An →An as we considered above. Then,
the EKL class w0(P) refines the Milnor number of the singularity. Indeed, over C, the Milnor
number is the vector space dimension of the quotient A, which is, by definition, the rank of the
EKL quadratic form. This refinement was introduced in [35, Section 6].

Over C, the Milnor number of f is closely related to the topology of the Milnor fibre, which
is homotopic to a bouquet of µ spheres Sn, where µ is the Milnor number of f . This gives us
the classical formula:

χ(F)= 1+ (−1)n−1µ( f ),

where F is the Milnor fibre of f . We suspect that this formula can be generalized.

Example 8.5. In the case considered in Definition 6.9, we had f :A2 → k given by x2 − y2. Its
derivative is given by

P := d f :A2 →A2

(x, y) 7→ (2x,−2y).

The Jacobian matrix, in this context, is simply the Hessian of f . This gives us:

J(x, y)=
[
2 0
0 −2

]
,

for any (x, y).
Now, the A1-Milnor number can be easily computed by the consideration of Remark 8.4 and

Equation 8.2.
µA

1 = 〈detJ(0)〉 = 〈−4〉 = 〈−1〉 ∈GW(k).
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Finally,

χA
1

c (S f ,0)= χA1

c (1−L)= 〈1〉−〈−1〉 = 〈1〉+ (−〈1〉)2−1 · 〈−1〉 = 〈1〉+ (−〈1〉)n−1µA
1
( f ).

Of course, in general, one has to consider an equivariant version of the A1-Euler charac-
teristic, which takes into account the action of µ̂, since the classes S f ,x are in M

µ̂

k . Many
interesting questions can be asked regarding this topic: what is the general relationship be-
tween the A1-Milnor number of a function f and the A1-Euler characteristic of the motivic
class S f ? Is there anything that can be said for non-isolated singularities?

8.3 Comparison with Related Work
As we mentioned in the introduction, Levine [44] has given an alternative definition of “arith-
metic DT invariants", independently of the motivic invariants. This construction relies on the
definition of DT invariants for general Deligne-Mumford stacks due to Behrend and Fantechi
[9]. The idea is to construct a motivic version of the intrinsic normal cone, called the “intrinsic
stable normal cone”. For a scheme Z over B, this cone is an object in the motivic stable homo-
topy category fromA1-homotopy theory and, given any perfect obstruction theory φ : E• → LZ/B,
it can be used to construct a class [Z,φ]vir ∈ C̃Hr(Z;detE•). Now, if detE is isomorphic to ωZ up
to squares, integration gives us an invariant in GW(k), as we described in 7.24. The choice of
an obstruction theory such that E is relatively orientable is therefore essential for this theory.

In the case we considered above, i.e., Z given as a critical locus of a function f on a smooth
variety M, we have that Z is given by zeros of a section of the cotangent bundle. In this case,
there is a canonical obstruction theory induced by the surjective morphism d f : TM →IZ → 0,
where IZ is the ideal corresponding to Z. After tensoring by OZ , we see that d f induces a map
F : TM ⊗OZ → IZ /I 2

Z . Then, by considering the composition with the derivative in the first
term of the complex, we get the obstruction theory

φ= (F,Id) :
(
TM ⊗OZ

∂φ→ΩM/B ⊗OZ

)
→

(
IZ /I 2

Z
d→ΩM/B ⊗OZ

)
,

which induces a virtual class [Z]vir in the Chow-Witt group of Z twisted by det(TM)⊗OZ , which
is clearly orientable.

A more detailed comparison can be made based on the works of Azouri [7] and Levine-
Pepin-Lehalleur-Srinivas [46]. Specifically, the conductor formulas for the nearby fiber functor
given in these works show that our invariants would agree with the ones in [44] over R, but
not necessarily in general. It is also worth mentioning that such formulas also give partial
answers to the questions at the end of the last section, with the formula 〈1〉+ (−〈1〉)n−1µA

1
( f )

for the Euler characteristic of the motivic Milnor fibre being correct in for the case of mappings
An → A1 given by quasi-homogeneous singularities. Finally, we point out that adjoining α to
GW(k) in (8.1) is not related to orientation issues, but simply due to the appearance of the class
L

1
2 in K0(V ar(k)) needed to make up for the sign differences (see remark 6.11).

8.4 Examples from Physics and Computations
In this last section, we show how, starting from previous computations, we can get results on
GW(k). Even though these have still some conjectural aspects, they show how the arithmetic
DT invariants should behave. We are especially interested in the comparison between our
arithmetic invariants (and also the motivic invariants) with real invariants for the case of
degree zero DT invariants of A3, which, as far as we are concerned, was not pointed out before.
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We also consider the example of Gopakumar-Vafa invariants, generalizing a result of Liu and
Ruan, even though there is no real version of GV invariants, pointing out these results might
guide future research.

8.4.1 The Hilbert Scheme of Points of the Affine Space as a Critical
Locus

We start by computing degree 0 DT invariants of A3. The moduli space we have to consider,
therefore, is simply the Hilbert Scheme of n points of A3 (see Section 6.2). We recall how to
realize the Hilbert scheme of n points of A3 as a critical locus of a function. Fix the notation
Hilbn(Ar) for the Hilbert scheme of n points of Ar and

Ak =Spec k[x1, . . . , xr]=Spec k[x].

The following considerations can be found in the notes by Nakajima [60].
In the affine space, a subscheme B ⊂Ar of dimension 0 and degree n correspond to a quo-

tient of k[x] of dimension n. Therefore, if we fix a vector space V of dimension n, the structure
we need to add in order to get a quotient of k[x] consists of an action of k[x] on V and an ele-
ment v ∈ V (that will correspond to 1) that generates the whole space under the action. Such
action is the choice of r elements of Hom(V ,V ) which commute. This allows us to consider the
set:

B(V )= {(A1, . . . , Ar,v) ∈Homr(V ,V )×V | [A i, A j]= 0, v generates V under the action}.

To get the Hilbert Space, where each element corresponds to a different quotient of k[x], from
B(V ), we need to mod out by the action of GL(V ) (by conjugation on the A i).

Proposition 8.6. Let V ∼= kn be an n-dimensional k-vector space. The Hilbert scheme of points
of Ar can be represented as

Hilbn(Ar)∼=
{

(A1, . . . , Ar,v)

∣∣∣∣∣ (i)
[
A i, A j

]= 0 for all i, j
(ii) v generates V under the action of the A j

}/
GLn(r), (8.2)

Proof. Each point on Hilbn(Ar) can be represented by an ideal I ⊂ k[x]. Take any isomorphism
k[x]

I
∼= V . Let A i be given by multiplication by xi and let v = 1̄ ∈ k[x]

I . With such choices, (i) and
(ii) are obvious. Notice that this map does not depend on the choice of the isomorphism since
any two isomorphisms are related by conjugation by elements GLn(r) on V .

On the other hand, given an element (A1, . . . , Ar,v) satisfying (i) and (ii), we can define a
k-algebra structure on V via the map from k[x] → V given by sending xi to A iv and 1 to v.
This map is well defined by (i) and it is surjective by (ii). By taking the kernel, we get an ideal
I ⊂ k[x] which represents an element of the Hilbert scheme. These considerations imply that
these two maps are inverses and therefore define an isomorphism.

Let us now restrict ourselves to the case r = 3. In this situation the above result from
Proposition 8.6 allows us to write Hilbn(A3) as the critical locus of a regular function on a
smooth space. This puts us in the situation that we have already studied in Section 8.1 of this
chapter and in Section 6.3 of Chapter 6.

Proposition 8.7. Fix a vector space V ∼= kn of dimension n. Consider the quotient

Mn = {(A,B,C,v) | v generates V under the action of the algebra generated by A, B and C}
GLn(V )

,
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and the function
fn : Mn → k

(A,B,C,v) 7→Tr([A,B]C)

Then Mn is a smooth variety, fn is a regular map and Hilbn(A3)= {d fn = 0}⊂ M

Proof. Most of our argument comes from [11] and [65]. To see that Mn is an algebraic variety,
it suffices to notice that Mn is a quotient of an open subset of a vector space by a free action.
Indeed, the condition of the v generating the whole V under the action is an open condition. To
see that the action is free, we have:

g(A,B,C,v)= (gAg−1, gBg−1, gCg−1, gv)= (A,B,C,v) =⇒
=⇒ W = ker(g− id) is stable under the action of A,B and C but contains v

By definition, v generates V under the action and so W =V . This shows g = id. Now we use a
construction from GIT. We consider the action on Hom(V ,V )3 ×V ×C given by

g(A,B,C,v, z)= (gAg−1, gBg−1, gCg−1, gv,det(g)−1z)

.
The semistable points of this action are given exactly by points whose closures of their

orbits are disjoint of Hom(V ,V )3 ×V ×0. We see that, if v generates V under the action, this
condition is satisfied. GIT, then, gives us that the quotient is a smooth variety.

Now, by Proposition 8.6, it is enough to show that the condition d fn = 0 corresponds to
commutativity of the A i. Indeed, we have:

Tr([A,B]C)=∑
i

∑
k

∑
j

(ai jb jk −bi ja jk)cki.

Therefore, if the derivatives with respect to each entry of C are all zero, we get that [A,B]=
0. As Tr([A,B]C) = Tr(A[B,C]) = Tr(B[C, A]), the vanishing of the other derivatives implies
that the other pairs of matrices commute.

8.4.2 The Virtual Classes of the Hilbert Scheme of Points
To compute the virtual classes over C, the authors of [11] used Proposition 6.13 and the fact
that there is a natural toric action on M which descends given by

(t1, t2, t3) · (A,B,C,v) 7→ (t1A, t2B, t3C, t1t2t3v)

which satisfies all the hypotheses. For details, see [11, Lemma 2.4].
This implies that the virtual class of Hilbn(C3) can be computed by the difference [ f −1

n (1)]−
[ f −1

n (0)] as in Theorem 6.13. This difference was computed in [11] to correspond to a generating
series

ZC3(t)=
∞∑

n=0
[Hilb(C3)]virtn =

∞∏
m=1

m−1∏
k=0

(1−Lk+2−m/2tm)−1. (8.3)

This computation (cf. Theorem 3.7 in [11]) relies on the motivic classes of Grassmanians,
general linear groups, and of the variety of commuting matrices, which are the same over any
field. The only difficulty in generalizing this computation would be to prove that the virtual
class is given by the difference of the fibers. Sample targets for generalization include examples
studied by Choi-Katz-Klemm in [16]. We next explain how to obtain the class of the variety of
commuting matrices over any field, which is something that doesn’t appear in the paper [11].
There, they refer to the computation of the number of points in this variety over finite fields
([25]). We explain how to adapt the argument.
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Lemma 8.8 (cf. Prop. 2.1 of [11]). Let V be a vector space of dimension n and let Cn ⊂
Hom(V ,V )2 be the variety of pairs of commuting linear transformations on V . Define the class

c̃n = [Cn]
[GLn]

∈ K0(V ar(k))[(1−Ln)−1 : n ≥ 1].

We have

C(t)=
∞∑

n=0
c̃ntn =

∞∏
m=1

∞∏
j=0

(1−L1− j tm)−1

Proof. As stated in [11], the proof follows from the count of the number of pairs of commuting
matrices over finite fields by Feit and Fine [25] that we adapt here. For each linear transfor-
mation A ∈ Hom(V ,V ), we have a decomposition

V = KA ⊕ IA,

where where KA = kerAn and IA = ImAn (recall n = dimV ). Notice that A and B commute if
and only if B(KA) ⊂ KA, B(IA) ⊂ IA and A|KA commutes with B|KA and A|IA commutes with
B|IA .

Now, fix K and I in V with dimK = s, dim I = t and K ⊕ I = V . Define CK ,I
n = {(A,B) ∈

Hom(V ,V )2 | KA = K and IA = I}. By the consideration above, we have the decomposition:

CK ,I
n = Cnil

K ×Cinv
I

where

Cnil
K := {(A,B) ∈Hom(K ,K)2 |A is nilpotent} and Cnil

I := {(A,B) ∈Hom(I, I)2 |A is invertible}.

Indeed, if A and B commutes and K = KA and I = IA, we have that the restrictions of A and B
to K and I are well defined and, by definition, A|K is nilpotent and A|I is invertible (since An is
invertible when restricted). On the other hand, if (A′,B′) ∈ Cnil

K and (A′′,B′′) ∈ Cinv
I , A = A′⊕ A

satisfy KA = K and IA = I (by definition) and commutes with B = B′⊕B′′. Now, noticing that
choosing K and I is the same thing as choosing a basis of V (element in GLn) and factoring
by choices of bases of K and I (elements of GLs and of GL t), we have, after taking classes in
K0(V ar(k))

Cn = ⋃
s+t=n

GLn

GLs ×GL t
Cnil

s ×Cinv
t

(as the spaces only depend on the dimension, we switched K and I by the dimensions). It is
then enough to compute Cinv

t and Cnil
s .

To compute Cnil
s , fix a nilpotent matrix A. The similarity classes of A matrices can be

identified with partitions of the dimension, i.e., ways of writing s = r1 + . . . rk. This is done by
choosing a good triangular representation (see [3]). The matrices that commute with A form
a linear space of dimension M(π), where M =∑

i, j min(r i, r j) for each partition π of s. This can
be computed by choosing a basis that triangularizes A. As we only want one for each class, we
have to take the quotient by the non-singular matrices that commute with A. The reader can
check the details in [26]. We get:

[Cnil
s ]= [GLs]

∑
π(s)

[Lb2
i ]

[GLbi ]

For Cinv
t , notice that the space β of matrices similar to a matrix B is simply the quotient

of GL t by the subgroup Cinv,β of GL t formed by matrices that commute with B (since gB =
Bg =⇒ gBg−1 = B, which means that g does not change the similarity class). Therefore,
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we have [Cinv,β][β] = [GL t] and if St is the space of similarity classes of t× t matrices, i.e.,
considering all βs:

[Cinv
t ]= [St][Cinv,β][β]= [St][GL t]

It suffices, then, to compute [St]. Each element in [St] is a matrix given by a rational
canonical form, for which corresponds a set of t monic polynomials g i with g i|g i+1 and with
sum of degrees equal to t. Setting hi = g i+1

g i
, the degrees of hi satisfy

∑t
i=1 ideghi = t. This sum

corresponds to a partition of t with bi as the frequency of i. For each partition π, the space of
polynomials that correspond to such a partition is simply the vector space given by the sum of
the degrees. Letting k(π) be the sum of the frequencies for the partition π:

[St]=
∑

π∈π(t)
Lk(π)

To finish the proof, one has to use many identities of partition functions that we omit here.

Remark 8.9. The fact that the computation relies on the number of pairs of commuting ma-
trices, whose class is computed from partitions, makes the fact that you get the MacMahon
function

M(t)=
∞∏

n=1

1
(1− tn)n , (8.4)

which is the generating function for plane partitions, more plausible. In the end, the geometry
"hides" identities of partition functions.

Even though we do not have a generalization for Proposition 6.13 and therefore do not
have a partition function defined over any field, the expression over C is well defined over any
field (since the only variety appearing is L). Therefore, to test our definition of arithmetic DT
invariants 8.1, we can use the morphism in equation 8.1, to get arithmetic DT invariants and
compare with the real invariants. It is interesting that the motivic invariants (even though
only computed over C already contain information about the real geometry).

Proposition 8.10. The DT invariants forA3 can be refined over GW(k) by the generating series:
∞∏

n=1
(〈1〉− (αt)2n−1)−1

∞∏
n=1

(〈1〉− (αt)nH+〈−1〉(αt)2n)−⌊
n
2 ⌋ (8.5)

Proof. Applying the morphism, we first just send L to 〈−1〉 and L
1
2 to α.

∞∏
m=1

m−1∏
k=0

(〈1〉−〈−1〉k+2α−mtm)−1

Notice that
(〈1〉−〈−1〉αmtm)(〈1〉−αmtm)= (〈1〉−αmtmH+〈−1〉α2mt2m)

where H is the hyperbolic form given by 〈1〉+〈−1〉.
In the case m is even, the product above will appear exactly m

2 times. For m odd, it appears
m−1

2 = ⌊m
2 ⌋ times and we get an extra factor of the form (〈1〉−αmtm)−1.

∞∏
m=1

m−1∏
k=0

(〈1〉−〈−1〉k+2αmtm)−1 = ∏
m odd

(〈1〉−αmtm)−1
∞∏

m=1
(〈1〉− (αt)mH+〈−1〉(αt)2m)−⌊

m
2 ⌋

By making m = 2n−1 in the first product and m = n in the second, we get:
∞∏

n=1
(〈1〉− (αt)2n−1)−1

∞∏
n=1

(〈1〉(αt)nH+〈−1〉(αt)2n)−⌊
n
2 ⌋ (8.6)
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Remark 8.11. The above refinement is compatible with previous results over R and C.

Taking k = C, we have GW(k) = Z and α = −1, which results in the classical MacMahon
generating function for the number of plane partitions 8.4:

∞∏
n=1

(1− (−t)2n−1)−1
∞∏

n=1
(1−2(−t)n + (−t)2n)−⌊

n
2 ⌋ =

∞∏
n=1

(1− (−t)2n−1)−1
∞∏

n=1
(1− (−t)n)−2⌊ n

2 ⌋ =
∞∏

n=1
(1− (−t)n)−n = M(−t)

For k = R, after computing the signature morphism (i.e., sending 〈1〉 to 1, 〈−1〉 to −1 and
taking α= i), we get the symmetric MacMahon function, which is the generating function for
symmetrical plane partitions, which correspond to the real count as computed by Pasquetti-
Krefl-Walcher in [41].

∞∏
n=1

(1− (−it)2n−1)−1
∞∏

n=1
(1−0(−it)n + (−it)2n)−⌊

n
2 ⌋ =

∞∏
n=1

(1− (−it)2n−1)−1
∞∏

n=1
(1− (−it)2n)−⌊

n
2 ⌋ = Msym(−it)

8.4.3 Gopakumar-Vafa Invariants at the Castelnuovo Bound
Our interest now turns to the computation of Gopakumar-Vafa (GV) invariants for M a smooth
quintic hypersurface in P4, through their relation to DT invariants. In this case, the moduli
spaces of interest are In(M,d), which correspond to the Hilbert scheme parameterizing sub-
schemes of M with Hilbert polynomial given by dt+n, that is, curves of degree d and arithmetic
genus 1−n. The GV invariants nd

g correspond to DT invariants I1−g,d. Recent work by Liu-
Ruan [49] and Alexandrov-Feyzbakhsh-Klemm-Pioline-Schimannek [4] has established the fa-
mous Castelnuovo bound for Gopakumar-Vafa invariants, which was predicted in physics,

nd
g = I1−g,d = 0, for any d and g with g > d2 +5d+10

10
=: B(d).

and led to a computation of the numbers nd
B(d) = I1−B(d),d. That is, the numbers nd

g when the
pair (g,d) is on the bound. Here, we write formulae for the motivic and arithmetic refinements
of such numbers at the bound. This was done using the fact that, for n = B(d), Mn,d is not only
smooth but a projective bundle over a projective space (see [49, Prop. 6.2], where they prove it
over C).We believe that this is true over any k of characteristic zero.

Proposition 8.12. Let g = B(d). This implies that B(d) is an integer, which means that d can
be written as d = 5m for some m. Assuming that we can write the moduli space as a projective
bundle as above, motivic and arithmetic refinements of the invariants In,d for n = 1−g = 1−B(d),
are given by the formulae:

[Mn,d]vir = L
N
2 +2 (LN+1 −1)(L5 −1)

(L−1)2 ∈Mk

and, applying the morphism χA
1
:

χA
1 (

[Mn,d]vir
)=


α ·

(
6+5N

2
〈1〉+ 4+5N

2
〈−1〉

)
, for m = 0,1mod4

5(N +1)
2

H, for m = 2,3mod4

where N = (m+3
3

)− (m−2
3

)−1.
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Proof. The base is P4 and the fibre is PN , where N = (m+3
3

)− (m−2
3

)−1.
The first part of the result is simply given by using the fact that, for smooth varieties, the

motivic virtual class is simply the class of the variety times L−dimMn,d /2 (see Definition 6.10 and
Example 6.12). To compute [Mn,d], we use that the class of a fibre bundle is the product of the
fibre and the base.

Using that

[Pr]= Lr +Lr−1 + . . .L+1= Lr+1

L−1
and that dimMd,n = N +4, we get

[Mn,d]vir = L−
dimMn,d

2 [Mn,d]= LN
2 +2[PN] · [P4]= LN

2 +2 (LN+1 −1)(L5 −1)
(L−1)2 ∈Mk.

Finally, applying the morphism, we only need to keep track of whether N is even or odd.
If it is even, the A1-Euler characteristic of PN is N+1

2 H and if it is odd it is given by N+1
2 〈1〉+

N−1
2 〈−1〉.

The formula above, especially the one in GW(k), gives a prediction of what should be the
A1-count of curves of higher genus on the quintic over any field. It would be interesting to
check if this result can be reached with direct methods, without making use of motivic DT
invariants.
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Final Considerations

Although the work was divided into two quite different parts, they are similar in the sense that
both of them concern the study of mathematical properties of Physical invariants. In the first,
we have explained a possible way of interpreting modularity for Gromov-Witten invariants,
especially for the open/real case. In the second part, we considered refined Donaldson-Thomas
invariants and their relations with real invariants and with arithmetic: we were able find new
relationships between different refinements clear and to give applications.

We would like to use this last section to expose some of the open problems that arose from
the objects studied in this Thesis. For example, by considering a divisor family, we should be
able to construct some kind of generalization of Jacobi forms: in the simple case of a divisor
family given by two points inside an elliptic curve, Cao, Movasati, and Villaflor [15] recovered
actual Jacobi forms, as we have mentioned in Chapter 5. Physically, an interesting example
would be to consider the results of the paper [34] and try to recover their numbers from the
Picard-Fuchs-type equations presented there.

Question 1. Can we get a generalization of Jacobi forms considering the Gauss-Manin con-
nection and the mixed Hodge structure for families of more general Calabi-Yau varieties with
divisors?

Another very important aspect to consider is the relationship that the modularity that we
study here and in the GMCD program has with the literature.

Question 2. How is the modularity found in GMCD related to other types of modularity found
in the literature?

For example, the classical Yau-Zaslow formula gives the generating series of the number
of curves of genus g on a K3 surface of fixed homology class as quasi-modular forms. This
was further extended, for example, in the work of G. Oberdieck [61]. Similarly, F. Greer [29]
considered generating functions of GW invariants in cohomology rings which allowed some
generalizations. Considering whether GMCD would give us similar results for these cases and
also whether the generalizations constructed under GMCD would be in some sense related to
the works above are problems that are worth studying.

Regarding the second part, we also have many interesting questions to consider. The first
was already considered in 8.3 and is regarding how our arithmetic invariants relate to other
works present in the literature. We are especially interested in the relations with Levine’s
construction in [44].

Question 3. How is our construction related to previous work in the literature?

Another interesting aspect for further study is to try to make the idea of applying Levine’s
localization formulas [45] to get a refined version of Theorem 6.13 and therefore be able to
prove that our refinement for the degree zero invariant of A3 is correct. We pose this question
in the following way:

89
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Question 4. Is there a way of using Levine’s localization formula to show that the motivic
Milnor fibre of the Hilbert scheme is the difference between the generic fibre and the zero fibre?

We finish relating the two parts. There are still many open questions in both fields to
consider and there are even relations between the two parts that might be very interesting.
One example would be the question about the modularity of arithmetic invariants.

Question 5. Is there a modularity for invariants valued at GW(k)? Is there an intrinsic way of
considering this modularity?

To be more specific regarding the last question, a possible line of research would be to
construct some kind of A1-mirror symmetry for the quintic, at least. Recall that mirror quintic
relates, on one side (the A side), Gromov-Witten invariants and, on the other side (the B side),
computations with periods, which are defined in a purely algebraic setting (as we explained in
the first part of this work). The idea, then, would be to relate the A1 counts of rational curves
on the quintic to some class of A1-periods with values on GW(k). Although the A1-counts are
conjectured to be simply combinations of real and complex counts

nA
1

d = nCd +nRd
2

〈1〉+ nCd −nRd
2

〈−1〉

which are both in generating series

∞∑
d=0

nCdd3 qd

1− qd∑
dodd

nRdd2 qd/2

1− qd

that can be written in terms of solutions of the vector fields from the first part of the thesis.
However, it is not straightforward to find a suitable generating series for nA

1

d (i.e., that satisfies
some kind of vector field) because of the different exponents of d and q above. Even though, we
think that it should be possible to construct a refined Gauss-Manin connection on a cohomology
with coefficients on GW and, from that, compute new vector fields whose solutions should
correspond to nA

1

d .

Question 6. Is there a generating series for the A1-counts of rational curves on the quintic that
satisfies differential equations of periods as in the classical case?

We hope that this work was able to, at least, inspire mathematicians to pursue problems
at the edge between Number Theory, Algebraic Geometry, and Physics and that discoveries
regarding many of the interesting phenomena described here, from modularities that show up
to the relationships between real and motivic invariants, will be done and clarify our under-
standing.
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invariants. Invent. math., 192(1):111–160, April 2013.

[12] Franziska Bittner. The universal Euler characteristic for varieties of characteristic zero.
Compositio Mathematica, 140(4):1011–1032, July 2004. Publisher: London Mathematical
Society.

[13] Raoul Bott and Loring W Tu. Differential forms in algebraic topology. Graduate Texts in
Mathematics. Springer, New York, NY, 1 edition, April 1995.

[14] Philip Candelas, Xenia C. De La Ossa, Paul S. Green, and Linda Parkes. A pair of Calabi-
Yau manifolds as an exactly soluble superconformal theory. Nuclear Physics B, 359(1):21–
74, July 1991.

91



92 BIBLIOGRAPHY

[15] Jin Cao, Hossein Movasati, and Roberto Villaflor Loyola. Gauss-manin connection in
disguise: Quasi jacobi forms of index zero. arXiv: 2109.00587, September 2021.

[16] Jinwon Choi, Sheldon Katz, and Albrecht Klemm. The refined BPS index from stable pair
invariants. Comm. Math. Phys., 328(3):903–954, 2014.

[17] David A. Cox and Sheldon Katz. Mirror symmetry and algebraic geometry. Mathematical
surveys and monographs 68. American Mathematical Society, 1999.

[18] P. Deligne and N. Katz. Groupes de Monodromie en Géométrie Algébrique dirigé par A.
Grothendieck, volume 340 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg,
1973.

[19] Pierre Deligne and David Mumford. The irreducibility of the space of curves of given
genus. Publications Mathématiques de l’IHÉS, 36:75–109, 1969.

[20] Jan Denef and François Loeser. Geometry on Arc Spaces of Algebraic Varieties. In Carles
Casacuberta, Rosa Maria Miró-Roig, Joan Verdera, and Sebastià Xambó-Descamps, edi-
tors, European Congress of Mathematics, Progress in Mathematics, pages 327–348, Basel,
2001. Birkhäuser.

[21] Jan Denef and François Loeser. Lefschetz numbers of iterates of the monodromy and
truncated arcs. Topology, 41(5):1031–1040, Sep 2002.

[22] David Eisenbud and Harold I. Levine. An algebraic formula for the degree of a C∞ map
germ. Annals of Mathematics, 106(1):19–44, 1977.

[23] Felipe Espreafico. Gauss-manin connection in disguise: Open gromov-witten invariants,
June 2022. arXiv:2205.08302 [math-ph].

[24] Felipe Espreafico and Johannes Walcher. On motivic and arithmetic refinements of
donaldson-thomas invariants, July 2023. arXiv:2307.03655 [hep-th].

[25] Walter Feit and N. J. Fine. Pairs of commuting matrices over a finite field. Duke Mathe-
matical Journal, 27(1):91–94, March 1960.

[26] NJ Fine and IN Herstein. The probability that a matrix be nilpotent. Illinois Journal of
Mathematics, 2(4A):499–504, 1958.

[27] William Fulton. Intersection Theory. Springer New York, 1998.

[28] B.R. Greene and M.R. Plesser. Duality in Calabi-Yau moduli space. Nuclear Physics B,
338(1):15–37, July 1990.

[29] François Greer. Quasi-modular forms from mixed noether-lefschetz theory, Aug 2019.
arXiv:1809.06945 [math].

[30] Alexander Grothendieck. On the de Rham cohomology of algebraic varieties. Publications
Mathématiques de l’IHÉS, 29:95–103, 1966.

[31] Lothar Göttsche and Vivek Shende. Refined curve counting on complex surfaces. Geome-
try & Topology, 18(4):2245–2307, Oct 2014.

[32] Robin Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer-Verlag,
New York, 1977.



BIBLIOGRAPHY 93

[33] Hans Jockers and Masoud Soroush. Effective Superpotentials for Compact D5-Brane
Calabi-Yau Geometries. Commun. Math. Phys., 290(1):249–290, August 2009.

[34] Hans Jockers and Masoud Soroush. Effective superpotentials for compact d5-brane
calabi-yau geometries. Communications in Mathematical Physics, 290(1):249–290, Aug
2009.

[35] Jesse Leo Kass and Kirsten Wickelgren. The class of Eisenbud-Khimshiashvili-Levine is
the local A1-Brouwer degree. Duke Math. J., 168(3):429–469, 2019.

[36] Jesse Leo Kass and Kirsten Wickelgren. An arithmetic count of the lines on a smooth
cubic surface. Compositio Mathematica, 157(4):677–709, April 2021. Publisher: London
Mathematical Society.

[37] Nicholas M. Katz and Tadao Oda. On the differentiation of De Rham cohomology classes
with respect to parameters. Journal of Mathematics of Kyoto University, 8(2):199–213,
January 1968. Publisher: Duke University Press.

[38] Giorgi Khimshiashvili. On the local degree of a smooth mapping. Bull. Acad. Sci. Geor-
gian SSR, 85:309–312, 1977.

[39] Maxim Kontsevich. Enumeration of Rational Curves Via Torus Actions, page 335–368.
Birkhäuser Boston, 1995.

[40] Maxim Kontsevich and Yan Soibelman. Stability structures, motivic Donaldson-Thomas
invariants and cluster transformations, November 2008. arXiv:0811.2435 [hep-th].

[41] Daniel Krefl, Sara Pasquetti, and Johannes Walcher. The real topological vertex at work.
Nuclear Physics B, 833(3):153–198, July 2010.

[42] Marc Levine. Aspects of enumerative geometry with quadratic forms. Documenta Math-
ematica, Vol 25:2179–2239 Pages, December 2020. arXiv:1703.03049 [math].

[43] Marc Levine. Lectures on quadratic enumerative geometry, volume 745, page 163–198.
American Mathematical Society, Providence, Rhode Island, 2020.

[44] Marc Levine. The instrinsic stable normal cone. Algebraic Geometry, pages 518–561,
September 2021.

[45] Marc Levine. Atiyah-Bott localization in equivariant Witt cohomology, April 2022.
arXiv:2203.13882 [math].

[46] Marc Levine, Simon Pepin Lehalleur, and Vasudevan Srinivas. Euler characteristics of
homogeneous and weighted-homogeneous hypersurfaces, 2021.

[47] Marc Levine and Arpon Raksit. Motivic gauss–bonnet formulas. Algebra & Number
Theory, 14(7):1801–1851, Aug 2020.

[48] Jun Li and Gang Tian. Virtual moduli cycles and gromov-witten invariants of algebraic
varieties. Journal of the American Mathematical Society, 11(1):119–174, 1998.

[49] Zhiyu Liu and Yongbin Ruan. Castelnuovo bound and higher genus Gromov-Witten in-
variants of quintic 3-folds, October 2022. arXiv:2210.13411 [hep-th].

[50] D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande. Gromov–witten theory and
donaldson–thomas theory, i. Compositio Mathematica, 142(5):1263–1285, Sep 2006.



94 BIBLIOGRAPHY

[51] John Milnor. Algebraick-theory and quadratic forms. Inventiones mathematicae,
9(4):318–344, December 1970.

[52] Fabien Morel. A1-algebraic topology over a field. Lecture notes in mathematics. Springer,
Heidelberg; New York, 2012.

[53] Fabien Morel and Vladimir Voevodsky. A^1-homotopy theory of schemes. Inst. Hautes
Études Sci. Publ. Math., pages 45–143 (2001), 1999.

[54] David R. Morrison and Johannes Walcher. D-branes and normal functions. Advances in
Theoretical and Mathematical Physics, 13(2):553 – 598, 2009.

[55] Hossein Movasati. Quasi-modular forms attached to elliptic curves, i. Annales mathéma-
tiques Blaise Pascal, 19(2):307–377, 2012.

[56] Hossein Movasati. Modular-type functions attached to mirror quintic Calabi–Yau vari-
eties. Math. Z., 281(3-4):907–929, December 2015.

[57] Hossein Movasati. Gauss–Manin Connection in Disguise: Calabi–Yau Modular Forms.
International Press of Boston, Incorporated, Somerville, April 2017.

[58] Hossein Movasati and Roberto Villaflor Loyola. A course in Hodge Theory: Periods of
algebraic cycles, volume 1. IMPA, Rio De Janeiro, RJ - Brazil, 1 edition, July 2021.

[59] David Mumford, John Fogarty, and Frances C. Kirwan. Geometric invariant theory.
Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin Heidelberg, 3., enl.
ed., 3. reprint edition, 2002.

[60] Hiraku Nakajima. Lectures on Hilbert schemes of points on surfaces. University lecture
series. American Mathematical Society, Providence, R.I, 1999.

[61] Georg Oberdieck. Gromov–Witten invariants of the hilbert schemes of points of a K3
surface. Geom. Topol., 22(1):323–437, October 2017.

[62] R. Pandharipande, J. Solomon, and J. Walcher. Disk enumeration on the quintic 3-fold.
Journal of the American Mathematical Society, 21(4):1169–1209, February 2008.

[63] Christiaan Peters and Joseph H. M. Steenbrink. Mixed Hodge Structures. Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemat-
ics. Springer-Verlag, Berlin Heidelberg, 2008.

[64] Yongbin Ruan and Gang Tian. A mathematical theory of quantum cohomology. Journal
of Differential Geometry, 42(2):259–367, January 1995. Publisher: Lehigh University.
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